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Abstract. Recently, there has been a surge of interest in the security of authenticated
encryption with associated data (AEAD) within the context of key commitment
frameworks. Security within this framework ensures that a ciphertext chosen by an
adversary does not decrypt to two different sets of key, nonce, and associated data.
Despite this increasing interest, the security of several widely deployed AEAD schemes
has not been thoroughly examined within this framework. In this work, we assess the
key committing security of several AEAD schemes. First, the AEGIS family, which
emerged as a winner in the Competition for Authenticated Encryption: Security,
Applicability, and Robustness (CAESAR), and has been proposed to standardization
at the IETF. A now outdated version of the draft standard suggested that AEGIS
could qualify as a fully committing AEAD scheme; we prove that it is not the case
by proposing a novel attack applicable to all variants, which has been experimentally
verified. We also exhibit a key committing attack on Rocca-S. Our attacks are
executed within the FROB game setting, which is known to be one of the most
stringent key committing frameworks. This implies that they remain valid in other,
more relaxed frameworks, such as CMT-1, CMT-4, and so forth. Finally, we show that
applying the same attack techniques to Rocca and Tiaoxin-346 does not compromise
their key-committing security. This observation provides valuable insights into the
design of such secure round update functions for AES-based AEAD schemes.
Keywords: AEGIS · Key Commitment · Rocca-S · Rocca · Tiaoxin-346 · AEAD

1 Introduction
Authenticated Encryption (AE) is a cryptographic technique that combines encryption
and message authentication codes (MACs) to provide both confidentiality and integrity
for data. It ensures that not only is the information kept secret from unauthorized
parties, but also that it has not been tampered with during transit. AEGIS, proposed
by Wu and Preneel [WP13a], is one such scheme and its variant AEGIS-128 emerged
as one of the winning candidates of the Competition for Authenticated Encryption:
Security, Applicability, and Robustness (CAESAR) [Cae19] for high performance computing
applications.

The traditional focus of designers in authenticated encryption with associated data
(AEAD) has been on ensuring the security aspects of confidentiality and ciphertext integrity.
However, it has been observed in recent years that the previously established notions of
confidentiality and integrity may not suffice in various contexts. Among the additional
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properties explored is the concept of key commitment, an area that has received relatively
less attention.

Key commitment assures that a ciphertext C can only be decrypted using the same key
that was originally used to derive C from some plaintext. Schemes that allow finding a ci-
phertext that decrypts to valid plaintexts under two different keys do not adhere to the prin-
ciple of key commitment. The issue of non-key-committing AEAD was initially highlighted
in scenarios such as moderation within encrypted messaging [DGRW18, GLR17]. Subse-
quently, it surfaced in various applications including password-based encryption [LGR21],
password-based key exchange [LGR21], key rotation schemes [ADG+22], and envelope
encryption [ADG+22].

In even more recent times, there have been new propositions [CR22, BH22] introducing
definitions that focus on committing to not only the key, but also the associated data and
nonce. Although there have been suggestions for novel schemes [CR22, ADG+22] that
align with these diverse definitions, uncertainties persist regarding which existing AEAD
schemes actually implement this commitment, and in what manner. Furthermore, several
crucial and widely-used AEAD schemes lack demonstrated commitment results. Recently,
commitment attacks have been mounted on several widely deployed AEAD schemes, like
CCM, GCM, OCB3, etc. [MLGR23].

Contributions. In this work, we assess the key committing security of AEGIS (all its
variants) and the other similar AEAD scheme Rocca-S.

A recent assertion has been made suggesting that there are no known attacks on AEGIS
in the key committing settings [DL] and AEGIS qualifies as a fully committing AEAD
scheme [MST23a, MST23b]. The challenge of attacking the key committing security of
AEGIS is also acknowledged as an open problem in [Kö22]. In [DL], it is claimed that finding
a collision on a 128-bit tag for variants of AEGIS requires about 264 computations, while for
a 256-bit tag, it requires 2128 computations. These claims are made under the assumption
that AEGIS is fully committing. However, contrary to all these claims, we demonstrate
the ability to execute a key committing attack within the FROB game setting [FOR17],
which is known to be one of the most stringent key committing frameworks. Thus, we are
able to find collisions on tags with a complexity of O(1). This implies that our attacks are
also valid in other, more relaxed frameworks, such as CMT-1, CMT-4, and so forth. We
also demonstrate a key committing attack against Rocca-S with a complexity of 264. Note
that the previous IETF version of Rocca-S claimed key committing security [NFI23a] while
the current IETF version [NFI23b] and conference version of Rocca-S [ABC+23] do not
claim any such security. The attacks presented in this work, along with their respective
complexities, are summarized in Table 1.

All our attacks exploit the processing of the associated data (AD) as follows. We
choose a nonce and key K, N . After the initialization phase of the mode, the internal state
becomes a known but uncontrolled value S. We show that, by choosing an appropriate
sequence of AD blocks, we can bring the internal state to a fixed value; or at least, a
partially fixed value, therefore making collisions immediate or more probable. Once such a
collision for a pair ((K1, N1, AD1), (K2, N2, AD2)) is obtained, we can encrypt any message
M and the corresponding ciphertext and tag will have a valid decryption both by K1 and
K2. Note that the pairs (K1, N1), (K2, N2) can be arbitrary, and in particular we can have
N1 ̸= N2.

Additionally, we show that our techniques applied to Rocca and Tiaoxin-346 do not lead
to an attack compromising their key-commitment security. Note that the key committing
security of these two schemes still remains an open question. However, the robustness of
these schemes against these attacks provides valuable insights into the design considerations
for the round update function in such AES-based AEAD schemes.
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Table 1: Comparisons of the proposed attack complexities with their generic complexities

AEAD
Scheme

Tag Size
(bits)

Generic
Attack Complexity

Attack
Complexity

Reference

AEGIS-128 128 264
1 Sec. 3.2AEGIS-256

AEGIS-128L 128/256 264/2128

Rocca-S 256 2128 264 Sec. 3.3

Structure of the Paper. Rest of the paper is organized as follows. In Section 2, we
introduce the notions of AEAD and key committing security, and describe the essential
features of the schemes that will be attacked. In Section 3, we describe the attacks on
AEGIS and Rocca-S. Section 4 illustrates the resistance of Rocca and Tiaoxin-346 against
these attacks and provides insights regarding the secure design of such schemes. Since
the attacks on AEGIS are easy to verify experimentally, we provide attack vectors in
Section A.

2 Preliminaries
2.1 Committing Authenticated Encryption (AE) Frameworks
Consider a symmetric encryption scheme Σ consisting of encryption and decryption
algorithms denoted by ΣEnc and ΣDec, respectively where

ΣEnc : K ×N ×AD × P → C,

and
ΣDec : K ×N ×AD × C → P ∪ {⊥}.

Here, K, N , AD, P and C refer to the key, nonce, associated data, plaintext/message
and ciphertext spaces, respectively. Formally, the above scheme is called as a nonce based
authenticated encryption scheme supporting associated data, or an nAE scheme.

A committing authenticated encryption (cAE) scheme guarantees the definitive deter-
mination of the values of its constituent elements, including the key, nonce, associated data,
or message, which are utilized to produce the ciphertext. In the committing AE framework,
the adversary tries to construct a ciphertext which can be obtained from two different sets
of keys, nonces, associated data and messages. Let, Ci ← ΣEnc(Ki, Ni, ADi, Pi) where
Ki ∈ K, Ni ∈ N , ADi ∈ AD, Pi ∈ P and Ci ∈ C for i ∈ {1, 2}. The adversary aims to
find C1, C2 such that C1 = C2 and (K1, N1, AD1, P1) ̸= (K2, N2, AD2, P2).

Various notions of committing security framework have been introduced [FOR17, CR22,
BH22]. We discuss here some of them. In CMT-1, the ciphertext commits exclusively to
the key. In the attack, the adversary must produce ((K1, N1, AD1, P1), (K2, N2, AD2, P2))
such that K1 ̸= K2 and ΣEnc(K1, N1, AD1, P1) = ΣEnc(K2, N2, AD2, P2). CMT-4 relaxes
the constraints and allows that the commitment can encompass to any of the inputs of
ΣEnc, not just the key. The adversary can breach CMT-4 security by constructing a set
((K1, N1, AD1, P1), (K2, N2, AD2, P2)) such that, (K1, N1, AD1, P1) ̸= (K2, N2, AD2, P2)
and ΣEnc(K1, N1, AD1, P1) = ΣEnc(K2, N2, AD2, P2). Bellare and Hoang introduced
CMT-3, which is slightly more restrictive than CMT-4. They replaced the constraint
(K1, N1, AD1, P1) ̸= (K2, N2, AD2, P2) with (K1, N1, AD1) ̸= (K2, N2, AD2). The FROB
game, initially proposed by Farshim, Orlandi, and Rosie [FOR17] and later adapted to
the AEAD setting by Grubbs, Lu, and Ristenpart [GLR17], is even more restrictive. It
requires the condition N1 = N2 in addition to K1 ≠ K2. It has been demonstrated that
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FROB (A)

1. (C, (K1, N1, AD1), (K2, N2, AD2)) $← A

2. P1 ← ΣDec(K1, N1, AD1, C)

3. P2 ← ΣDec(K2, N2, AD2, C)

4. If P1 = ⊥ or P2 = ⊥ then
Return false

5. If K1 = K2 or N1 ̸= N2 then
Return false

6. Return true

(a) FROB Game

CMT-1(A)

1. (C, (K1, N1, AD1), (K2, N2, AD2)) $← A

2. P1 ← ΣDec(K1, N1, AD1, C)

3. P2 ← ΣDec(K2, N2, AD2, C)

4. If P1 = ⊥ or P2 = ⊥ then
Return false

5. If K1 = K2 then
Return false

6. Return true

(b) CMT-1 Game

CMT-3(A)

1. (C, (K1, N1, AD1), (K2, N2, AD2)) $← A

2. P1 ← ΣDec(K1, N1, AD1, C)

3. P2 ← ΣDec(K2, N2, AD2, C)

4. If P1 = ⊥ or P2 = ⊥ then
Return false

5. If (K1, N1, AD1) = (K2, N2, AD2)
then Return false

6. Return true

(c) CMT-3 Game

CMT-4(A)

1. (C, (K1, N1, AD1), (K2, N2, AD2)) $← A

2. P1 ← ΣDec(K1, N1, AD1, C)

3. P2 ← ΣDec(K2, N2, AD2, C)

4. If P1 = ⊥ or P2 = ⊥ then
Return false

5. If (K1, N1, AD1, P1) = (K2, N2, AD2, P2)
then Return false

6. Return true

(d) CMT-4 Game

Figure 1: Different Frameworks for Committing Security.

CMT-3 security implies CMT-1, which in turn implies the FROB game [BH22, MLGR23].
In essence, the FROB game presents the most formidable challenge for an adversary to
overcome. All the related games are outlined in Fig. 1.

In [CR22], several notions based on the assumptions considered on the key are intro-
duced. Specifically, the authors define the terms honest, revealed, and corrupted keys. A
key is deemed honest when the adversary possesses no knowledge of it. If the adversary
gains knowledge of the key or independently selects a key (i.e., corrupts the key), it is
categorized as revealed or corrupted. Applying this conceptual framework, the attacks
discussed in the paper can be contextualized within a revealed-revealed scenario, wherein
the adversary needs knowledge of both the keys.

2.2 Description of AEGIS
The authenticated encryption scheme with associated data (AEAD) AEGIS was introduced
in SAC 2013 [WP13a]. It encompasses three variants: AEGIS-128, AEGIS-256, and AEGIS-
128L. In the CAESAR competition [Cae19], AEGIS-128 was selected in the final portfolio
for use case 2 (high-performance applications) and AEGIS-128L was a finalist for the same
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use case.
Across all these variants, the state update function is based on a single round of AES

(excluding the key addition operation) denoted as A(X), where X represent a 16-byte state.
Specifically, A(X) = MC ◦SR ◦SB(X), where MC, SR, and SB denote the Mixcolumns,
Shiftrows, and Subbytes operations, respectively. For more details on these operations refer
to [DR00, DR02]. Note that we use the function AR(X, Y ) which represents A(X)⊕ Y

that is depicted as in the figures.

State Update. The internal state of AEGIS-128 (resp. AEGIS-256) is made of five
(resp. six) 16-byte registers, and the state update function UPDATEA-128(Sr, mr) (resp.
UPDATEA-256(Sr, mr)) transforms the internal state Sr to yield the state Sr+1 and is
expressed as:

Sr+1,0 = AR(Sr,b−1, Sr,0 ⊕mr)
Sr+1,1 = AR(Sr,0, Sr,1)

...
Sr+1,b−1 = AR(Sr,b−2, Sr,b−1) ,

where b = 5 (for AEGIS-128) or 6 (for AEGIS-256), resulting in state sizes of 80 bytes
and 96 bytes, respectively. The state update function of AEGIS-128L, denoted as
UPDATEA-128L(Sr, mr,0, mr,1), differs slightly from the other two. Let Sr := Sr,0|| · · · ||Sr,7
be the state after the r-th update, where each Sr,i (for 0 ≤ i ≤ 7) is a 16-byte block.
The function UPDATEA-128L(Sr, mr,0, mr,1) yields the state Sr+1 where Sr+1 is defined as
follows:

Sr+1,0 = AR(Sr,7, Sr,0 ⊕mr,0)
Sr+1,1 = AR(Sr,0, Sr,1)
Sr+1,2 = AR(Sr,1, Sr,2)
Sr+1,3 = AR(Sr,2, Sr,3)
Sr+1,4 = AR(Sr,3, Sr,4 ⊕mr,1)
Sr+1,5 = AR(Sr,4, Sr,5)
Sr+1,6 = AR(Sr,5, Sr,6)
Sr+1,7 = AR(Sr,6, Sr,7).

Algorithm. AEGIS starts with an initialization phase where the initial state is loaded
with a key K, an initialization vector (IV) IV , and some constants. For AEGIS-128 and
AEGIS-128L, the sizes of K and IV are 128 bits, while for AEGIS-256, they are 256
bits. For AEGIS-128, the state is updated using UPDATEA-128(Sr, mr) (for 0 ≤ r ≤ 9)
where each mr is formed using either K or K ⊕ IV . Similarly, for AEGIS-256 the state
is updated using UPDATEA-256(Sr, mr) (for 0 ≤ r ≤ 15) where each mr is derived from K
and IV . In the case of AEGIS-128L, the state is updated using UPDATEA-128L(Sr, IV, K)
(for 0 ≤ r ≤ 9). In all of these state update functions, S0 is the initial state.

Following this, based on the lengths of the associated data and plaintext, the states
undergo further updates. The associated data and plaintext are separated in 128-bit blocks
and processed using the state update function. After each step of the state update function,
a 128-bit block of associated data/plaintext is processed for AEGIS-128 and AEGIS-256
(for AEGIS-128L, two 128-bit blocks are encrypted at each step). During the processing of
the plaintext, ciphertext blocks are also generated. However, the details are omitted as
those are not relevant to the current work.
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A finalization phase follows in which the state update function will be iterated for
seven rounds, before generating the tag. These last updates depend on the lengths of
the plaintext and associated data, encoded as 64-bit strings, along with a portion of the
previous state. All the 128-bit substates of the final state are XOR-ed to obtain the 128-bit
tag. For more comprehensive details on AEGIS, please refer to [WP13a, WP13b, WP16].

2.3 Rocca-S
Rocca-S [ABC+23] is an updated version of Rocca [SLN+21] which has been proposed
to standardization at the IETF. We refer here to the latest version of the draft standard
document [NFI23a].

Rocca-S employs a 256-bit key and a 256-bit nonce. Its internal state is reduced to seven
16-byte blocks, and its tag length is 256 bits. Much like AEGIS and Rocca, it undergoes
phases of initialization, associated data processing, encryption, and finalization, all subject
to similar operational constraints. The main difference lies in the round update function,
denoted as UPDATERS(Sr, X0, X1), responsible for generating Sr+1, where Sr represents
the output of the r-th round. If Sr = Sr,0|| · · · ||Sr,6, where each Sr,i (for 0 ≤ i ≤ 6) is a
16-byte block, then Sr+1 is defined as follows:

Sr+1,0 = Sr,6 ⊕ Sr,1

Sr+1,1 = A(Sr,0)⊕X0

Sr+1,2 = A(Sr,1)⊕ Sr,0

Sr+1,3 = A(Sr,2)⊕ Sr,6

Sr+1,4 = A(Sr,3)⊕X1

Sr+1,5 = A(Sr,4)⊕ Sr,3

Sr+1,6 = A(Sr,5)⊕ Sr,4 .

Likewise, the generation of the ciphertexts, as well as the details of initialization and
finalization phases, are irrelevant to our attack, and we need only to focus on the AD
processing phase.

3 Attacks
In this section, we present a broad overview of the state update mechanism employed in
constructions such as AEGIS and Rocca-S. Subsequently, we demonstrate attacks that
break the key commitment security of both AEGIS and Rocca-S, leveraging insights derived
from this generalized perspective.

3.1 Attack Overview
As outlined in Section 2, AEAD schemes like AEGIS and Rocca undergo four phases:
initialization, associated data processing, encryption, and finalization, culminating in
the generation of the ciphertext-tag as the output. Throughout these phases, the state
updating process is influenced by various parameters: key, initialization vector (IV) or
nonce, associated data (AD) and plaintext. Considering various parameters, the state
updating process can be conceptualized as transitions through different internal states,
illustrated in Fig. 2.

Let us denote the initial state as IS0. The initialization phase is dependent on the key
K and the initialization vector IV . Hence, the entire state update process during this
phase can be represented as a function UK,IV which transforms the initial state IS0 into
IS1. Subsequently, UAD and UP modify the internal states IS1 and IS2 to IS2 and IS3
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respectively, based on the associated data AD and plaintext P . Finally, contingent on the
lengths of AD and P , U|P |,|AD| transforms IS3 into IS4. The tag is then generated based
on IS4.

Figure 2: State update as a function of key, initialization vector, associated data and
plaintext.

We are specifically interested in analyzing the FROB security. As outlined in Section 2.1,
the adversary is required to generate a ciphertext (ciphertext and tag pair) which decrypts
to valid plaintexts using two different sets of keys and same IV. Let us consider a set of key,
IV, AD, and plaintext, denoted as (K1, IV1, AD1, P1) which generates a ciphertext-tag
pair C1||τ1. Consider another key K2 and an IV IV2. Note that K1 ̸= K2 and IV1 = IV2.

Figure 3: Overview of the attack in FROB framework.

As depicted in Fig. 3, we need to find a AD∗ such that UAD∗ transforms IS2
1 to IS1

2 .
If |AD∗| = |AD1| (the plaintext is P1), the final state IS1

4 can be obtained which results
in generating the ciphertext-tag pair C1||τ1. Consequently, the tuples (K1, IV1, AD1, P1)
and (K2, IV2, AD∗, P1) yield the same ciphertext-tag pair, thereby compromising the
FROB security of AEGIS. Hence, the adversary is required to find an AD∗ such that
|AD∗| = |AD1|. An attack is deemed valid if its complexity is lower than the generic
attack complexity. The generic attack for these schemes depends only on the tag length.
Indeed, forging a valid tag is sufficient to break the key committing security. Specifically,
if tag check is valid, detecting an incorrect key becomes impossible. Thus, for an AEAD
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scheme with a t-bit tag, the data complexity of a generic attack is 2t/2. Therefore, any
attack that successfully recovers a valid AD∗ with a data complexity lower than 2t/2 can
be considered valid.

It is important to note that, following the framework introduced in [CR22], the envisaged
attack aligns with the revealed-revealed scenario. In this context, the adversary leverages
its knowledge of both keys, K1 and K2, to uncover the internal states IS1

2 and IS2
1 ,

respectively. Subsequently, the adversary identifies an appropriate AD∗ which, in turn,
breaks the FROB security.

Our attacks are reminiscent of previous works regarding the nonce-misuse (in)security
of AEGIS and related AEAD modes (see e.g. [KEM17]). In both cases, the adversary uses
successive AD or message words to control different state words. The novelty in our case
is that we want to fix the internal state instead of recovering it.

3.2 Attacks on AEGIS

Here, we analyze the FROB security of AEGIS. We show how to find a ciphertext-tag
pair which can be decrypted using two different sets of key and nonce. In particular,
our focus is on finding (K1, IV ) and (K2, IV ) pairs that produce identical ciphertext-
tags when employed with some associated data and plaintexts. AEGIS also follows the
generalized state updating process described using Fig. 2. Initially, two keys K1, K2 and
an initialization vector IV are chosen. Consider that encryption of associated data AD1
and plaintext P1 using K1, IV yields ciphertext-tag C||τ . Let T = T0||T1||T2||T3||T4 be
the internal state after the processing of the AD. Let S0 = S0,0||S0,1||S0,2||S0,3||S0,4 be
the internal state after processing of K2 and IV , and before the AD. We are interested in
finding a suitable AD AD∗ such that UAD∗ transforms S0 to T .

Recovering the AD∗ for AEGIS-128. With reference to the discussion in Section 3.1
and Fig. 3, the states S0,0||S0,1||S0,2||S0,3||S0,4 and T = T0||T1||T2||T3||T4 take the roles
of IS2

1 and IS1
2 , respectively.

Let AD∗ = AD∗
0 ||AD∗

1 ||AD∗
2 ||AD∗

3 ||AD∗
4 , where each AD∗

j (for 0 ≤ j ≤ 4) is a 16-byte
block. It is quite evident that each Ti can be expressed in terms of AD∗

i and S0,i (for
i ∈ {0, 4}) as shown below.

T0 = A(A(A(A(A(S0,0)⊕ S0,1)⊕A(S0,1)⊕ S0,2)
⊕A(A(S0,1)⊕ S0,2)⊕A(S0,2)⊕ S0,3)
⊕A(A(A(S0,1)⊕ S0,2)⊕A(S0,2)⊕ S0,3)
⊕A(A(S0,2)⊕ S0,3)⊕A(S0,3)⊕ S0,4)
⊕AD∗

4 ⊕A(A(A(A(S0,1)⊕ S0,2)⊕A(S0,2)⊕ S0,3)
⊕A(A(S0,2)⊕ S0,3)⊕A(S0,3)⊕ S0,4)
⊕AD∗

3 ⊕A(A(A(S0,2)⊕ S0,3)⊕A(S0,3)⊕ S0,4)
⊕AD∗

2 ⊕A(A(S0,3)⊕ S0,4)⊕AD∗
1 ⊕A(S0,4)⊕AD∗

0 ⊕ S0,0
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Figure 4: Attack on AEGIS-128

T1 = A(A(A(A(A(S0,1)⊕ S0,2)⊕A(S0,2)⊕ S0,3)
⊕A(A(S0,2)⊕ S0,3)⊕A(S0,3)⊕ S0,4)
⊕AD∗

3 ⊕A(A(A(S0,2)⊕ S0,3)⊕A(S0,3)⊕ S0,4)
⊕AD∗

2 ⊕A(A(S0,3)⊕ S0,4)⊕AD∗
1 ⊕A(S0,4)⊕AD∗

0 ⊕ S0,0)
⊕A(A(A(A(S0,2)⊕ S0,3)⊕A(S0,3)⊕ S0,4)
⊕AD∗

2 ⊕A(A(S0,3)⊕ S0,4)⊕AD∗
1 ⊕A(S0,4)⊕AD∗

0 ⊕ S0,0)
⊕A(A(A(S0,3)⊕ S0,4)⊕AD∗

1 ⊕A(S0,4)⊕AD∗
0 ⊕ S0,0)

⊕A(A(S0,4)⊕AD∗
0 ⊕ S0,0)⊕A(S0,0)⊕ S0,1
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T2 = A(A(A(A(A(S0,2)⊕ S0,3)⊕A(S0,3)⊕ S0,4)
⊕AD∗

2 ⊕A(A(S0,3)⊕ S0,4)⊕AD∗
1 ⊕A(S0,4)⊕AD∗

0 ⊕ S0,0)
⊕A(A(A(S0,3)⊕ S0,4)⊕AD∗

1 ⊕A(S0,4)⊕AD∗
0 ⊕ S0,0)

⊕A(A(S0,4)⊕AD∗
0 ⊕ S0,0)⊕A(S0,0)⊕ S0,1)

⊕A(A(A(A(S0,3)⊕ S0,4)⊕AD∗
1 ⊕A(S0,4)⊕AD∗

0 ⊕ S0,0)
⊕A(A(S0,4)⊕AD∗

0 ⊕ S0,0)⊕A(S0,0)⊕ S0,1)
⊕A(A(A(S0,4)⊕AD∗

0 ⊕ S0,0)⊕A(S0,0)⊕ S0,1)
⊕A(A(S0,0)⊕ S0,1)⊕A(S0,1)⊕ S0,2

T3 = A(A(A(A(A(S0,3)⊕ S0,4)⊕AD∗
1 ⊕A(S0,4)⊕AD∗

0 ⊕ S0,0)
⊕A(A(S0,4)⊕AD∗

0 ⊕ S0,0)⊕A(S0,0)⊕ S0,1)
⊕A(A(A(S0,4)⊕AD∗

0 ⊕ S0,0)⊕A(S0,0)⊕ S0,1)
⊕A(A(S0,0)⊕ S0,1)⊕A(S0,1)⊕ S0,2)
⊕A(A(A(A(S0,4)⊕AD∗

0 ⊕ S0,0)⊕A(S0,0)⊕ S0,1)
⊕A(A(S0,0)⊕ S0,1)⊕A(S0,1)⊕ S0,2)
⊕A(A(A(S0,0)⊕ S0,1)⊕A(S0,1)⊕ S0,2)
⊕A(A(S0,1)⊕ S0,2)⊕A(S0,2)⊕ S0,3)
⊕A(A(S0,2)⊕ S0,3)⊕A(S0,3)⊕ S0,4

T4 = A(A(A(A(A(S0,4)⊕AD∗
0 ⊕ S0,0)⊕A(S0,0)⊕ S0,1)

⊕A(A(S0,0)⊕ S0,1)⊕A(S0,1)⊕ S0,2)
⊕A(A(A(S0,0)⊕ S0,1)⊕A(S0,1)⊕ S0,2)
⊕A(A(S0,1)⊕ S0,2)⊕A(S0,2)⊕ S0,3)
⊕A(A(A(A(S0,0)⊕ S0,1)⊕A(S0,1)⊕ S0,2)
⊕A(A(S0,1)⊕ S0,2)⊕A(S0,2)⊕ S0,3)
⊕A(A(A(S0,1)⊕ S0,2)⊕A(S0,2)⊕ S0,3)
⊕A(A(S0,2)⊕ S0,3)⊕A(S0,3)⊕ S0,4)

In these equations, the only unknowns are AD∗
0 , · · · , AD∗

4 . Notably, from the expression
for T4, AD∗

0 can be directly recovered. Subsequently, the expression for T3 involves only
AD∗

0 and AD∗
1 as unknowns. Consequently, after determining AD∗

0 , AD∗
1 can be deduced

from this expression. Following this pattern, the remaining AD∗
i ’s can be successively

recovered from the corresponding equations, ultimately determining AD∗ in constant time.
Refer to Fig. 4 for the overview of the attack. Based on the values of the substates

S0,0, · · · , S0,4, some of the internal substates values can be fixed (indicated by the red
rectangles in Fig. 4). Notably, when the value of T4 is set, it deterministically establishes
the internal substates S1,0 (illustrated by the blue rectangles in Fig. 4). Following a similar
approach, the remaining substates of AD∗ can be deduced based on the values of the
substates of T , as depicted in the figure using various colors.

Recovering AD∗ for AEGIS-256/AEGIS-128L. To recover AD∗ for both AEGIS-256
and AEGIS-128L, a strategy analogous to the one employed for AEGIS-128 can be applied.
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Figure 5: Attack on AEGIS-256

While we omit the detailed equations here (similar to those presented for AEGIS-128),
the same technique enables the deterministic recovery of all 128-bit substates of AD∗.
The attack strategies for AEGIS-256 and AEGIS-128L are outlined in Fig. 5 and Fig. 6,
respectively.

Experimental Verification. In order to verify the validity of our proposed strategy, we
have implemented the attacks that break the FROB security. We have provided examples
of attack vectors corresponding to the attack on AEGIS-128, AEGIS-256 and AEGIS-128L
in Appendix A.1, A.2 and A.3, respectively.

3.3 Attack on Rocca-S
The primary attacking strategy on Rocca-S aligns with the generalized approach outlined
in Section 3.1. However, we are not able to control all the internal state blocks, so the
complexity is higher and the attack is non-deterministic. For Rocca-S, consider the scenario
where a 256-bit key K1, a 256-bit nonce N , a 6× 128-bit = 768-bit associated data AD1,
and a plaintext P1 (of arbitrary length) produce a ciphertext-tag pair C1||τ1.
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Figure 6: Attack on AEGIS-128L

Assuming an initial state IS1
0 is established through the initialization process using

K1 and N , applying UPDATERS(IS1
0 , Z0, Z1) for 20 iterations transforms the internal state

to IS1
1 . Subsequently, the state undergoes further transformation to IS1

2 and IS1
3 after

incorporating AD1 and P1. Similarly, for another key K2 and same nonce N , an initial
state IS2

0 is transformed into IS2
1 . The objective is now to identify associated data AD∗

that, when applied, can transition the internal state from IS2
1 to IS1

2 . It is worth to note
that the length of AD∗, denoted as |AD∗|, must match that of AD1. This constraint
ensures the ability to generate IS1

4 using a different set of K2 and N .

Recovering AD∗ for Rocca-S. In recovering AD∗, we follow a strategy similar to the
one used for attacks on AEGIS. The procedure for recovering AD∗ is depicted in Fig. 7.
Note that in the figure, the states S0 and T corresponds to IS2

1 and IS1
2 , respectively. It

is quite evident that the substates of T can be expressed in terms of substates of S0 and
AD∗ as follows:

T0 = AD∗
2 ⊕A(Si,1 ⊕ Si,6)⊕A(A(Si,4)⊕ Si,3)⊕AD∗

1 ⊕A(Si,3)
T1 = AD∗

4 ⊕A(AD∗
0 ⊕A(Si,0)⊕A(Si,5)⊕ Si,4)

T2 = A(AD∗
2 ⊕A(Si,1 ⊕ Si,6))⊕AD∗

0 ⊕A(Si,0)⊕A(Si,5)⊕ Si,4

T3 = A(A(AD∗
0 ⊕A(Si,0))⊕ Si,1 ⊕ Si,6)⊕A(A(Si,4)⊕ Si,3)⊕AD∗

1 ⊕A(Si,3)
T4 = AD∗

5 ⊕A(A(A(Si,1)⊕ Si,0)⊕A(Si,5)⊕ Si,4)
T5 = A(AD∗

3 ⊕A(A(Si,2)⊕ Si,6))⊕A(A(Si,1)⊕ Si,0)⊕A(Si,5)⊕ Si,4

T6 = A(A(AD∗
1 ⊕A(Si,3))⊕A(Si,2)⊕ Si,6)⊕AD∗

3 ⊕A(A(Si,2)⊕ Si,6)

The values of AD∗
5 , AD∗

3 , AD∗
1 , AD∗

2 , AD∗
0 and AD∗

4 can be recovered successively from
the equations pertaining to T4, T5, T6, T0, T3 and T1, respectively. The recovery process
is also illustrated in Fig. 7. It should be noted that the substate T2 cannot be controlled.
Therefore, the actual attack on Rocca-S will use 264 values for AD1 and compute 264

values for AD∗ so that with high probability, a collision can be found between them.
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Figure 7: Recovery of AD∗ for Rocca-S.

4 Ineffectiveness and Insights: Attacks on Tiaoxin-346 and
Rocca

Here, first of all, we discuss about the effect of our attack technique on Tiaoxin-346 and
Rocca. Then we discuss about possible countermeasures that arise from some distinction
between the round functions of several designs.

4.1 Application on Tiaoxin-346

First, we give a brief overview of Tiaoxin-346. Then, we show that using the proposed
technique, the key committing security of Tiaoxin-346 cannot be broken. The fundamental
issue is that we lack freedom to control the blocks of internal state. Since too many blocks
remain uncontrolled the complexity will remain above the generic attack.

Brief description on Tiaoxin-346. Tiaoxin-346 [Nik16], introduced in the CAESAR com-
petition [Cae19], is a stream cipher based design and composed of four phases- initialization,
associated data processing, encryption and finalization.

The Tiaoxin-346 state is composed of thirteen 128-bit words divided in three separate
registers. If the state after r-th round Sr is denoted using 128-bit substates as

(Ur,0, Ur,1, Ur,2, Vr,0, Vr,1, Vr,2, Vr,3, Wr,0, Wr,1, Wr,2, Wr,3, Wr,4, Wr,5),

then the round update function UPDATET (Sr, X0, X1, X2) that is used to generate Sr+1
can be formalized as follows:
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Ur+1,0 = Ur,0 ⊕X0 ⊕A(Ur,2)
Ur+1,1 = A(Ur,0)
Ur+1,2 = Ur,1

Vr+1,0 = Vr,0 ⊕X1 ⊕A(Vr,3)
Vr+1,1 = A(Vr,0)
Vr+1,i = Vr,i−1 (for i ∈ {2, 3})

Wr+1,0 = Wr,0 ⊕X2 ⊕A(Wr,5)
Wr+1,1 = A(Wr,0)
Wr+1,i = Wr,i−1 (for i ∈ {2, 3, 4, 5})

In the initialization phase, the state S0 is initialized using a nonce, a secret key and some
constants Z0 and Z1. Then, S0 is updated using UPDATET (S0, Z0, Z1, Z0) to obtain the
state S15. The associated data AD is divided into 128-bit words AD0||AD1|| · · · ||AD2d+1
(padding bits are added to make the AD length a multiple of 256). Then the function
UPDATET (S15+i, AD2i, AD2i+1, ADi ⊕ AD2i+1) is called for 0 ≤ i ≤ d to obtain the final
state Sr+d+1. Similarly, in the encryption phase, two 128-bit words from the plaintext P
is used to update the state in each round. In the finalization phase, the length of AD and
P in terms of number of bits is used to update the state. For details on the Tiaoxin-346,
refer to [Nik16].

Attack Idea. Refer to Fig. 8 for the proposed attack technique on Tiaoxin-346. Note
that, following Section 3.1, the states U0,0|| · · · ||U0,2||V0,0|| · · · ||V0,3||W0,0|| · · · ||W0,5 and
Tu,0|| · · · ||Tu,2||Tv,0|| · · · ||Tv,3||Tw,0|| · · · ||Tw,5 corresponds to IS2

1 and IS1
2 , respectively.

We are interested in recovering an associated data AD∗ such that UAD∗ transforms IS2
1 to

IS1
2 .
As shown in the figure, each Tu,i controls the value of c5−i for 0 ≤ i ≤ 5. Hence, the

values of ci’s can be determined in a constant time. In the second register, the values of b5
and b4 can be controlled freely. The remaining bi’s (i ∈ {0, 1, 2, 3}) are determined by the
Tu,i, b4 and b5. Similarly, for the first register, the values for a3, a4 and a5 can be freely
chosen.

In the processing of associated data in Tiaoxin-346, each ci should be equal to ai ⊕ bi.
For i ∈ {3, 4, 5}, ai’s are chosen such that ai = bi ⊕ ci. However, a0, a1 and a2 cannot be
controlled freely and thus the condition ci = ai⊕bi is satisfied for 0 ≤ i ≤ 2 with regards to
three 128-bit collisions. Hence, it is expected to find a valid AD∗ using 264×264×264 = 2192

different iterations of AD1. This attack complexity is worse than the generic attack on
Tiaoxin-346 as it uses a 128-bit tag, i. e., the generic collision probability is 264.

4.2 Application on Rocca
Here, we make a similar observation on Rocca. We provide a brief description of the
scheme and illustrate how our technique can (not) be employed.

Brief description on Rocca. Rocca [SLN+21, SLN+22] is an AES-based AEAD scheme
specifically designed for 6G applications. Its internal state contains eight 16-byte blocks
and its state update function UPDATER() relies also on the AES round function A. More
precisely, it accepts two additional 16-byte blocks X0, X1 which can be constants or
message / AD blocks, and modifies the state accordingly. Let Sr := Sr,0|| · · · ||Sr,7 be
the state after the r-th update, where Sr,i (0 ≤ i ≤ 7) are the 128-bit substates. Then
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Figure 8: Attack Overview on Tiaoxin-346

Sr+1 = UPDATER(Sr, X0, X1) is defined as follows:

Sr+1,0 = Sr,7 ⊕X0

Sr+1,1 = A(Sr,7)⊕ Sr,0

Sr+1,2 = Sr,1 ⊕ Sr,6

Sr+1,3 = A(Sr,1)⊕ Sr,2

Sr+1,4 = Sr,3 ⊕X1

Sr+1,5 = A(Sr,3)⊕ Sr,4

Sr+1,6 = A(Sr,4)⊕ Sr,5

Sr+1,7 = Sr,6 ⊕ Sr,0

Algorithm. Like for AEGIS, we omit details which are irrelevant to our attack, as we
mostly need to focus on the absorption of the AD blocks during the AD processing phase.

Rocca starts with an initialization phase where the state S0 is initialized by loading a 256-
bit key K0||K1, a 128-bit nonce N , and two 128-bit constants Z0, Z1, along with additional
constants. The operation UPDATER(Si, Z0, Z1) is iteratively executed for 0 ≤ i ≤ 19
to compute the state S20. When processing the associated data AD, padding bits are
appended to form AD∗ in such a way that its length, measured in bits, is a multiple
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Figure 9: Recovering AD∗ for Rocca. Note that AD∗ = AD∗
0 || · · · ||AD∗

5 .

of 256. The operation UPDATER(S20+i, AD∗
2i, AD∗

2i+1) is executed for 0 ≤ i ≤ d, where
AD∗ = AD∗

0 ||AD∗
1 || · · · ||AD∗

2d+1. The plaintext P is processed similarly, except that it
also intervenes in the computation of (pairs of) ciphertext blocks which are returned. In
the finalization step, the state update is called with the binary-encoded lengths of AD
and P are used, and the 128-bit tag is computed as the XOR of all state blocks.

Attack Idea. With reference to Section 3.1, we discuss here the process of recovering
AD∗ for Rocca. Refer to Fig. 9 for the overview of the attack technique. Strategy similar
to the one employed for Rocca-S is applied for Rocca. Like Rocca-S, we consider that the
states S0 and T corresponds to IS2

1 and IS1
2 , respectively and the 128-bit substates of T

are expressed in terms of 128-bit substates of S0 and AD∗.

T0 = AD∗
4 ⊕AD∗

0 ⊕ Si,7 ⊕A(Si,5)⊕ Si,4

T1 = A(AD∗
2 ⊕ Si,0 ⊕ Si,6)⊕AD∗

0 ⊕ Si,7 ⊕A(Si,5)⊕ Si,4

T2 = A(AD∗
0 ⊕ Si,7)⊕ Si,0 ⊕ Si,6 ⊕A(A(Si,4)⊕ Si,3)⊕AD∗

1 ⊕ Si,3

T3 = A(A(Si,0)⊕ Si,7 ⊕A(Si,5)⊕ Si,4)⊕A(AD∗
0 ⊕ Si,7)⊕ Si,0 ⊕ Si,6

T4 = AD∗
5 ⊕A(Si,1 ⊕ Si,6)⊕A(Si,0)⊕ Si,7

T5 = A(AD∗
3 ⊕A(Si,2)⊕ Si,1)⊕A(Si,1 ⊕ Si,6)⊕A(Si,0)⊕ Si,7

T6 = A(A(AD∗
1 ⊕ Si,3)⊕A(Si,2)⊕ Si,1)⊕AD∗

3 ⊕A(Si,2)⊕ Si,1

T7 = AD∗
2 ⊕ Si,0 ⊕ Si,6 ⊕A(A(Si,4)⊕ Si,3)⊕AD∗

1 ⊕ Si,3

Note that successively processing the equations for T3, T4, T5, T6, T7 and T0, the values
of AD∗

0 , AD∗
5 , AD∗

3 , AD∗
1 , AD∗

2 and AD∗
4 can be determined. As illustrated in the figure,

the six distinct 128-bit blocks of AD∗ exert control over six out of the eight blocks in T .
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However, the remaining two blocks remain beyond control, and a valid solution of AD∗

requires collisions on two 128-bit blocks T1 and T2. From the arguments pertaining to
birthday-bound problem, it is expected that iterating through 264 × 264 = 2128 different
values of AD1, a valid AD∗ can be recovered. However Rocca has a 128-bit tag and thus
the generic attack has a complexity of 264. Note that similar observation (corresponding to
the recovery of AD∗) is also made by Takeuchi and Iwata while mounting a key recovery
attack on Rocca [TI].

4.3 Insights into Round Update Function: Resistance against Key
Committing Attacks

Here, we delve into the differences among round update functions that resist the attack
strategy proposed in this work. Unlike solutions proposed in [ADG+22, BH22, CR22],
which employ pseudo-random functions or hash-based approaches to transform a generic
AEAD scheme into a key committing one, our discussion focuses on insights into selecting
a round function to enhance resistance against key committing attacks.

First, let’s look into the design of Tiaoxin-346. The resilience of Tiaoxin-346 is primarily
derived from the utilization of three blocks of messages/associated data in each round,
with the third block being the XOR sum of the first two blocks. Notably, if the third block
of the message is not the XOR of the first two blocks, a deterministic attack becomes
feasible. The length of the tag and the size of each register also significantly influence the
attack’s effectiveness. As discussed in Section 4.1, finding a valid AD∗ requires collision
on three 128-bit blocks. The size of the register plays a crucial role in determining the
overall data complexity of the attack. If the smallest register has ms 128-bit blocks, then
during the AD absorption in the smallest register, ms blocks of AD cannot be controlled
freely. The success of the attack depends on the collision in these ms blocks, resulting in
a complexity of 264ms. The resistance against key committing attacks is achieved if the
length of the tag is less than 2128ms.

Now, we discuss about the resistance of Rocca against these attacks. Similar to AEGIS-
128L, the state update function of Rocca employs a 1024-bit state, and in each round, two
128-bit blocks of messages/associated data are absorbed. However, the application of our
technique results in a deterministic attack against AEGIS, whereas for Rocca, it requires a
data complexity of 2128. Notably, Rocca achieves full diffusion after 7 rounds, whereas
AEGIS-128L requires 10 rounds for full diffusion.

For AEGIS, the messages absorbed in the i-th round have effects on at most four state
blocks after the (i + 4)-th round. Referring to Fig. 6, consider AD∗

0 and AD∗
1 . After four

rounds, AD∗
0 affects blocks T0, T1, T2, and T3, while AD∗

1 affects the remaining blocks.
These affected blocks are disjoint, facilitating the discovery of a valid AD∗ in constant
time. In contrast, for Rocca, AD∗

0 and AD∗
1 affect blocks (T0, T1, T2, T3) and (T2, T6, T7),

respectively (refer to Fig.9). After three rounds of Rocca, due to faster diffusion, at
most six out of eight substate blocks can be independently controlled. Increasing the
round number does not improve the attack, as two or more AD blocks control the output
substates, and recovering a valid AD∗ depends on the collision in these blocks. This fast
diffusion property of Rocca enhance the security as compared to AEGIS-128.

5 Conclusion
The issue of key commitment security in AEGIS has been a significant and persisting
question. This work addresses this gap by conducting a thorough analysis of AEGIS. Our
analysis, considering various existing frameworks, culminated in the development of a
practical attack applicable to all variants of AEGIS. However, in frameworks where an
additional constraint of identical associated data is imposed, the proposed attacks will
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not be effective. We have also demonstrated that the key committing security of Rocca-S
can be compromised by the proposed attacks. These findings emphasize the ongoing
importance of research and evaluation in AEAD security, especially within the framework
of key commitment. Nevertheless, AEAD schemes such as Rocca and Tiaoxin-346 have
proven resistant to the presented attacks. Their immunity to key committing attacks offers
valuable insights into the design of these ciphers, which we believe will be instrumental in
shaping future AES-based AEAD schemes.
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A Attack Vectors
Note that, in the attack vectors, we have provided a ciphertext/tag pair. However, the
tuple ((K1, IV1, AD1), (K2, IV2, AD∗)) (here IV1 = IV2) works with any plaintext, i. e., if
we encrypt a plaintext with both (K1, IV1, AD1) and (K2, IV2, AD∗), it generates same
ciphertext/tag pair. In this way, numerous ciphertext/tag pair can be generated which
can be decrypted to valid plaintexts.

In the vectors provided, the leftmost bit is the least significant bit (LSB). Consider a
16-bit string b0 · · · b15 where b0 is the LSB and b15 is the most significant bit (MSB). Using
the vectors, the above string is denoted as [b0 · · · b7 b8 · · · b15].

A.1 Attack Vector for AEGIS-128

C||τ= [0xA5 0xA7 0x7C 0x8D 0x8D 0xB5 0xEB 0x88 0x35 0x72
0x71 0x78 0xDA 0x00 0x15 0xFF 0xBC 0x1D 0xB4 0xF6
0x28 0x7B 0x96 0xEE 0x1E 0xA0 0xF8 0xEC 0x0C 0xFF
0x32 0x4B]

K1= [0x62 0x1F 0x61 0xFA 0x65 0x84 0x70 0xCC 0x18 0x4B
0x39 0x45 0x3D 0xAB 0x75 0x80]

IV1= [0xCE 0xD7 0xE2 0xF0 0xB2 0xAE 0x0D 0x0D 0x3E 0x82
0x5F 0xFC 0xE4 0x6F 0xC7 0xCF]

AD1= [0xBE 0x17 0x84 0xAA 0x3B 0x98 0x29 0xBC 0xCC 0xF3
0x81 0x04 0x11 0x57 0x4F 0x43 0xFB 0x86 0xA4 0xE3
0xD6 0x34 0x1C 0x15 0xB7 0x07 0x8E 0x2C 0x91 0x75
0x86 0xE2 0x89 0x94 0x5D 0x69 0x85 0x55 0xB0 0xEE
0x68 0x70 0x27 0x71 0xF1 0x0A 0xF8 0x89 0x30 0xF9
0x35 0x7B 0x8D 0xFE 0x1F 0x07 0xD1 0x6F 0x39 0xD2
0x44 0x1D 0xC3 0x83 0x31 0x65 0xAF 0x74 0x55 0x03
0xA6 0xB3 0xD3 0x2C 0x15 0x8C 0x86 0xA3 0xFA 0xCF]

K2= [0xFC 0xF9 0x24 0xED 0x84 0x21 0x9B 0xD8 0x24 0xEB
0x58 0xB9 0x01 0xA8 0x08 0x82]

IV2= [0xCE 0xD7 0xE2 0xF0 0xB2 0xAE 0x0D 0x0D 0x3E 0x82
0x5F 0xFC 0xE4 0x6F 0xC7 0xCF]

AD∗= [0x15 0x7E 0xC0 0x40 0x64 0xDB 0x40 0x47 0xDC 0xE2
0x56 0x7D 0x41 0x6C 0x5D 0x08 0x71 0xB4 0xDB 0xD8
0x76 0xC5 0xCC 0xD1 0x44 0xF0 0x58 0x91 0xF5 0xED
0x22 0x91 0x3F 0xA8 0xEC 0x97 0x71 0xD5 0xD2 0x7C
0x28 0xF7 0x53 0xBB 0xE0 0x5A 0xD1 0xBF 0x34 0xF2
0x44 0x14 0xE7 0x37 0x88 0x61 0xB3 0x0E 0x5C 0x75
0x61 0x84 0xBE 0x03 0x0F 0xBB 0x57 0xF1 0x3B 0x2D
0x93 0x74 0xCB 0x70 0x57 0xFC 0x9D 0xF9 0xE4 0x2B]
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A.2 Attack Vector for AEGIS-256

C||τ= [0x5F 0x74 0x00 0x73 0x1E 0x88 0x1D 0x84 0xAE 0x0A
0x18 0xE2 0x16 0x9B 0x6E 0x98 0xB0 0x8D 0x5C 0xB1
0x74 0x9F 0x53 0x80 0xF6 0xE0 0x9B 0x0F 0x33 0x1D
0x42 0xF0]

K1= [0x15 0x86 0x32 0x3E 0x9C 0x71 0xB4 0x9F 0x13 0x36
0xAC 0x8D 0x7D 0x37 0x1B 0x9B 0x7A 0x80 0x0D 0x63
0x7D 0x27 0x46 0xFF 0x5C 0x55 0x0E 0x5A 0xEC 0xE7
0x8C 0x81]

IV1= [0xD9 0x9D 0x22 0x35 0x4E 0xF7 0x15 0xF8 0x70 0x88
0xEF 0x8E 0x88 0xBE 0xC0 0x1C 0x6A 0xD7 0xFE 0xDF
0x43 0xF7 0x8D 0x61 0x5D 0x88 0xB9 0x00 0xCA 0x62
0x29 0xF0]

AD1= [0x8E 0x15 0x9D 0xB0 0x18 0x2E 0x11 0xFC 0x46 0xE0
0x28 0xA6 0x49 0x58 0xC5 0x5E 0xFE 0x77 0x01 0xBA
0x07 0xB6 0x19 0x8C 0x3C 0x1D 0x1E 0xB7 0x63 0x5E
0x97 0xB0 0xCD 0x58 0x06 0x81 0x03 0xD5 0x64 0xDC
0x36 0xA2 0x26 0xCB 0x2B 0xC5 0xE6 0x5E 0x16 0xCB
0xB3 0x19 0xB2 0xFB 0x3C 0x39 0x3B 0x8E 0xCF 0xF1
0x79 0x06 0x61 0x4D 0x67 0xFF 0xF0 0xFB 0x86 0xC5
0x8E 0x61 0x8D 0x74 0x8F 0x52 0x7B 0x0C 0x75 0xC6
0x85 0x84 0x0D 0x09 0xC2 0xCA 0xF1 0xDB 0x18 0xC2
0x43 0x6F 0xE9 0x11 0x37 0x00]

K2= [0x5C 0xD5 0x0D 0xFB 0x4F 0x8A 0x55 0x31 0x1C 0xF3
0xCC 0xBD 0xF0 0xA4 0xD5 0x80 0x5D 0xAA 0x0B 0x2E
0x98 0xDE 0x8E 0x09 0x1F 0x82 0x04 0xBA 0x39 0x29
0x7C 0x78]

IV2= [0xD9 0x9D 0x22 0x35 0x4E 0xF7 0x15 0xF8 0x70 0x88
0xEF 0x8E 0x88 0xBE 0xC0 0x1C 0x6A 0xD7 0xFE 0xDF
0x43 0xF7 0x8D 0x61 0x5D 0x88 0xB9 0x00 0xCA 0x62
0x29 0xF0]

AD∗= [0xB9 0x55 0xF7 0x5C 0xB9 0x91 0xC3 0x17 0xD1 0xC4
0x2A 0x7D 0x7C 0x3A 0xC8 0x1E 0x84 0x62 0xF4 0x03
0x69 0x44 0x7F 0x20 0x6E 0xFB 0xF3 0x0E 0xD1 0x47
0x8A 0xD0 0xA4 0xA0 0x0C 0x00 0xA4 0x6B 0x84 0x71
0x14 0x14 0x70 0xF3 0xD3 0x4E 0x88 0xD7 0xF8 0xC3
0xFD 0xAE 0xAA 0x2A 0xA1 0x98 0xFC 0x07 0x87 0x74
0x7C 0x7D 0xBB 0x06 0x5E 0x56 0x1C 0x41 0x67 0x54
0x54 0xDF 0x1F 0x49 0x0A 0x1D 0x9B 0xE0 0x7E 0x05
0xF1 0x41 0xE9 0x2A 0x11 0x0E 0x91 0x87 0xB7 0xBA
0xA8 0x2F 0xBC 0x67 0x2B 0xEF]
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A.3 Attack Vector for AEGIS-128L

C||τ= [0xE2 0xF5 0x27 0xF6 0x7D 0xD5 0xC9 0x77 0x5C 0x0C
0x0A 0x09 0x0C 0x06 0x71 0x5A 0x4F 0x78 0x84 0xF1
0x2F 0x08 0xB8 0xF6 0x05 0xD4 0xED 0x86 0x89 0x52
0x37 0xA0]

K1= [0x09 0xAA 0x5D 0x16 0x70 0x62 0x2E 0xED 0xFB 0x18
0x8E 0x9D 0x17 0xA9 0x71 0x18]

IV1= [0x24 0xF2 0xEA 0xAF 0xAE 0xCA 0x95 0xFF 0xC8 0x4A
0x3B 0x94 0x36 0x8C 0xD2 0xC1]

AD1= [0x92 0x9D 0xBF 0xD2 0x4E 0xAE 0x0A 0x2E 0xAC 0xB1
0x1E 0x0F 0x82 0x28 0x1A 0x2D 0x4B 0x7F 0x15 0xF2
0x32 0x53 0x7B 0xFC 0x00 0xDC 0x98 0x08 0xA8 0xF7
0x57 0xA9 0xB5 0x38 0xF6 0x4E 0x0F 0xD1 0x6F 0x88
0xD1 0x10 0x7D 0xE9 0x11 0x35 0x8C 0x27 0x24 0xDE
0x8E 0x14 0xF5 0x51 0x21 0x0E 0xEB 0x90 0x95 0xB6
0x4A 0xAC 0x7D 0x1D 0xF9 0xAE 0xC5 0xEA 0x99 0x06
0xF5 0x0E 0x57 0x8A 0x8B 0xB5 0x64 0x3C 0x15 0x4C
0xD0 0xC2 0xE3 0xE6 0x76 0x82 0xE6 0xDF 0x63 0xB4
0x30 0x27 0xAE 0x13 0x94 0xD8 0x5D 0x16 0x6A 0x2E
0x3B 0x7C 0x0B 0xB6 0xAA 0xB9 0x98 0x2C 0x03 0x44
0xF0 0x98 0x54 0xB5 0x1A 0xBA 0x37 0xB6 0x51 0x70
0xCC 0xDB 0x91 0xCA 0x36 0x65 0x45 0x08]

K2= [0x1A 0x69 0x72 0xD1 0x60 0x38 0x0B 0xA9 0xD6 0x0D
0x6A 0xF6 0x1E 0xCB 0xEA 0x75]

IV2= [0x24 0xF2 0xEA 0xAF 0xAE 0xCA 0x95 0xFF 0xC8 0x4A
0x3B 0x94 0x36 0x8C 0xD2 0xC1]

AD∗= [0xB6 0x58 0x24 0xE0 0x6F 0x0E 0xA4 0x06 0x42 0x5A
0xF9 0x9F 0x84 0x1D 0xBA 0x19 0x3A 0xAA 0x11 0xA5
0xA1 0x09 0x72 0x02 0x85 0x9A 0x58 0xA2 0xDA 0x54
0xED 0x2A 0x57 0xF3 0x7F 0x00 0xBD 0xB0 0x31 0x0B
0x75 0xD5 0xCA 0xD0 0x3A 0x09 0x34 0x30 0x51 0xB9
0xF1 0x74 0x80 0xF8 0x79 0x8A 0x10 0xA1 0x16 0x89
0x40 0xCF 0xFC 0xDD 0x11 0x68 0xC2 0x22 0xF6 0xB5
0xFB 0xA3 0xED 0x44 0x81 0x1B 0xDA 0xBC 0xB4 0x2E
0xE3 0x52 0xA4 0x49 0x21 0xFD 0x9C 0x9F 0x41 0xF0
0xB7 0xD8 0x77 0xB4 0x62 0x3D 0x79 0x61 0x69 0xE9
0xD7 0x0A 0xA7 0x06 0x4C 0xD8 0x14 0xD8 0x9C 0xF1
0x56 0x1A 0xA9 0x42 0x06 0xD2 0x6C 0x70 0x28 0x04
0xE3 0xF4 0x11 0x14 0xC4 0x30 0x31 0x72]
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