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Abstract. The sponge is a popular construction for hashing and keyed hashing, and the
duplex for authenticated encryption. They are proven to achieve approximately 2c/2

security, where c is the so-called capacity. This approach generalizes to arithmetization-
oriented constructions, that operate on elements from a finite field of size p: in this
case, security is guaranteed up to pc/2. However, to hash securely, the sponge needs
to injectively pad the message, and likewise, authenticated encryption schemes often
flip bits in the inner part to ensure domain separation. While these bit manipulations
have little (but non-zero) influence on the efficiency and security in case of a field of
size 2, they become more profound for larger fields. For example, Reinforced Concrete
operates on a field with p ≈ 2256, absorbs 2 elements per permutation evaluation,
and has a capacity c = 1. Consequently, injective padding results in superfluous
permutation evaluations half of the time, and domain separation in the inner part
would reduce the capacity to 0 and thus void security. In this work, we investigate an
alternative approach to padding and domain separation for the sponge through the
use of non-cryptographic permutations (NCPs) to transform the inner state. The idea
dates back to the Merkle-Damgård with permutation construction (ASIACRYPT
2007) but we use it in a much more generalized form in the sponge and in the duplex.
We demonstrate that this approach allows for NCP-based padding and NCP-based
domain separation at a constant loss, regardless of the size of the field. We apply
our findings to arithmetization-oriented element-wise sponging (akin to the recently
introduced SAFE) and authenticated encryption.
Keywords: sponge · field elements · padding · SAFE · indifferentiability

1 Introduction
The sponge hash function construction of Bertoni et al. [BDPV07] has been the inspiration
of dozens of symmetric cryptographic modes for hashing and authenticated encryption
in the last decades. It operates on a b-bit state, which is split into an outer part of size
r (the rate) and inner part of size c (the capacity). Internally, it uses a cryptographic
b-bit permutation P. To hash a message M , it is first injectively padded to a string of
size a multiple of r bits, subsequently cut into r-bit blocks, and these blocks are then
added to the outer part of the state, interleaved by an evaluation of P on the state.
After the last message block is absorbed, the digest is squeezed from the outer part of
the state in r-bit blocks, again interleaved by evaluations of P. If we assume that P
is a random permutation, this construction is proven to behave like a random oracle
in the indifferentiability framework [MRH04, CDMP05] as long as the total number of
permutation evaluations is at most 2c/2 [BDPV08]. Naito and Ohta proved that the same
bound holds, even if the initial absorption is r + c/2 bits, and squeezing is performed at
r + c/2 − log2(c) bits at a time [NO14]. A depiction of the sponge and this optimized
version is given in Figure 1.
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Figure 1: Sponge construction, with a requested output of n bits. Here, the function
pad10∗

rI ,rA
appends to M a 1, followed by enough 0s so that the final message block is of full

length. The default sponge has cI = cA = cS , whereas the optimized version has cI = cA/2
and cS = cA/2 + log2(cA).

The sponge construction is the core behind the Keccak hash function [BDPV11b],
later adopted to the SHA-3 hash function standard [Nat15]. This standard operates on
a state of b = 1600 bits, and has a capacity ranging from c = 448 (with rate r = 1152)
to c = 1024 (with rate r = 576). Another famous hash function based on the sponge
is Ascon-Hash, from the Ascon suite [DEMS21], recently selected for standardization as
lightweight cryptographic hashing and authenticated encryption scheme [NIS19]. This
upcoming standard operates on a state of b = 320 bits, with a capacity ranging from
c = 192 to c = 256.

1.1 The Cost of Padding
In these cases, the message expansion incurred by the padding is not so much of an
efficiency penalty. Indeed, the minimum injective padding, or 10∗-padding, adds a single 1
and a sufficient number of 0s to that the message M is of size a multiple of r bits. For
a sponge evaluation, this incurs an extra permutation evaluation only if the unpadded
M turns out to have a size divisible by r. Even if a slightly more involved padding is
employed (e.g., the SHA-3 hash function standard [Nat15] first pads M with 01 to separate
plain hashing from XOFing, and then adopts the 10∗1-padding), the expected amount of
permutation calls incurred purely due to the padding is negligible. In other words, padding
is not the bottleneck in bit-oriented cryptographic schemes.

We see a comparable phenomenon in keyed applications of the sponge. For example,
in sponge-based authenticated encryption schemes such as SpongeWrap [BDPV11a] or
Ascon [DEMS21], a bit is XORed to the inner part of the state for separating the absorption
of associated data from the encryption of plaintext. Likewise, in Ascon-PRF [DEMS24], a
bit is XORed to the inner part of the state right before squeezing, to separate absorption
from tag generation and therewith thwart a certain type of length extension attack (refer
to Mennink [Men23, Section 8.3]). These bit manipulations have limited negative affect on
the generic security bound.

However, the situation drastically changes when we consider schemes that are evaluated
on prime field elements rather than bits, so-called arithmetization-oriented or finite-field
friendly schemes. The rise of these applications in the last years, notably in zero-knowledge
proof systems [FS86], fully homomorphic encryption [Gen09], and multiparty computation
in the head (MPCiTH) [KKW18], has lead to a large amount of cryptographic hash
functions, such as Poseidon [GKR+21], Poseidon2 [GKS23], Anemoi and Jive [BBC+23],
MiMC [AGR+16], Reinforced Concrete [GKL+22], XHash [ABK+23], Tip5 [SLS+23], and
Monolith [GKL+24]. Some of these designs propose permutations that operate over a large
field, Fp for a large p, and are instantiations of the sponge.

As the security proof of the sponge construction is field-agnostic, the bound carries
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over mutatis mutandis. Notably: if the permutation does not operate on F2 but rather
Fp, the construction is secure as long as the number of permutation evaluations is at
most pc/2. Naturally, in field-oriented designs, b, c, and r are smaller. For example,
Poseidon [GKR+21] takes p ≥ 232 (requiring c = 8 to achieve approximately 128-bit
security), XHash [ABK+23] takes p ≈ 264, and Reinforced Concrete [GKL+22] even
operates with p ≈ 2256 and operates on a state of b = 3 elements, split into a capacity
of c = 1 and a rate of r = 2. If such a function is used for general-purpose hashing, a
superfluous permutation evaluation just to process the padding has to be made for half of
the messages on average. This can be quite costly [HBHW23].

1.2 The Rise of SAFE
To solve the issue of padding, and various other issues in arithmetization-oriented hashing,
Aumasson et al. [AKMQ23] proposed SAFE: Sponge API for Field Elements. SAFE is
a generic API for sponge functions specifically tailored towards its use on field elements.
In a nutshell, SAFE requires the user to first hash the input-output pattern IO of the
sponge evaluation into a digest, that can be placed in the inner part of the initial state,
and subsequently it allows for element-wise absorption and squeezing as long as these
operations obey to the initial input-output pattern IO. The hash function evaluation
can then additionally hash certain other bit-based data or a domain separator D. This
construction was recently proven secure up to pc/2 queries by Khovratovich et al. [KBM23],
and SAFE has been implemented in the Neptune hash framework and some zero-knowledge
proof projects [Set22,MK22]. A comparable construction has recently been introduced by
Ashur and Singh Bhati [AB24].

The core idea of the input-output pattern is that, in many applications, such as
commitment schemes, Fiat-Shamir protocols, and verifiable encryption of cryptocurrency
transactions, the exact input-output pattern is known and fixed in advance, and even stays
constant for many evaluations. By thus hashing this pattern into the inner state, one de
facto considers sponge hashing with a prefix-free padding, and no 10∗-padding needs to be
performed. Of course, for general-purpose applications, using the input-output pattern, or
prefix-free padding in general, is not an ideal solution.

1.3 Our Contributions
In this work, we will consider an alternative approach: we will investigate the use of non-
cryptographic permutations (NCPs) to indicate end-of-message and to perform domain
separation. The approach takes inspiration of Hirose [Hir18], who is itself inspired from
the Merkle-Damgård with permutation construction [HPY07]. In a nutshell, Hirose et
al. proposed to transform the state of a Merkle-Damgård with an NCP to indicate the
end-of-message, and to use two different NCPs depending on whether the unpadded
message was full (i.e., of size a multiple of the message block length) or partial (i.e., not
full).1

We will adopt this idea to the sponge and discuss its potential in full generality,
including a discussion on the requirements on the NCPs in various sponge-based schemes.
In detail, we will consider three main types of construction in this work:

Hashing (Section 3). We consider the sponge hash function, or more specifically the
optimized version with increased initial absorption and increased squeezing, but with an
NCP to transform the inner part of the state (different NCPs depending on whether the

1One may observe similar appearance of NCPs together with secret primitives. For example, the
SUNDAE authenticated encryption scheme [BBLT18] multiplies the state by 2 or 4 depending on whether
data is full or partial. Likewise, CMAC [IK03, Dwo05] blinds the final state differently depending on
whether data is full or partial.
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message is full or partial). This contribution comes closest to the idea of Hirose, but
differs in that we apply it to the optimized sponge design. In addition, we consider two
variants: sponge-pi that allows the initial state to be selected from a restricted set of IV s
and sponge-pi$ that uses an external random oracle to hash certain bit-based input into
the initial state (akin to SAFE [AKMQ23] and the work of Grassi and Mennink [GM22]).
We demonstrate that security is achieved up to a constant factor 7 loss in the bound,
regardless of the size of the field. In a bit more detail, we prove that the two constructions
are indifferentiable from a random oracle up to approximately pc/2/7 queries.

Keyed Sponge (Section 4). We consider the full keyed sponge [BDPV12,MRV15] with
an NCP right before squeezing, dubbed fks-pi. For this construction we prove that
security degrades by a factor 7, regardless of the size of the field. In addition, this NCP
nicely separates between absorption and tag generation, exactly as Ascon-PRF did.

Duplex (Section 5). We consider the use of NCPs in the duplex construction [BDPV11a].
This generalization of the duplex to a padding-free setting is the by far most complex one,
the main reason being that the duplex is general on purpose and individual duplexing
calls can have different roles in a bigger construction. Because of this reason, the duplex
may potentially require an NCP in every duplexing call, and these NCPs also need to
be different. This brings us to two variants duplex-pi and duplex-pi$, again differing
in whether a hash function is used to hash certain bit-based input into the initial state,
and we prove that these two achieve indifferentiability security (the same model as the
original analysis [BDPV11a] and that of Degabriele et al. [DFG23]) up to approximately(
pc/(η2 − η + 1)

)1/2 queries, where η denotes the number of NCPs.

1.4 Comparison
Overall, the use of NCPs does not come for free. In particular, for sponge-pi we get a
constant factor loss, and for duplex-pi with η different NCPs we lose a factor (η2− η + 1).
However, different from simply carrying over the bit-oriented result to finite fields, this
loss remains constant regardless of the size of the field. This actual loss furthermore highly
depends on the actual number of NCPs in use. As we demonstrate in the applications,
the duplex-pi construction can be used to implement the sponge-pi construction with
η = 3 NCPs, as we basically consider three NCPs (the identity, and two different ones to
separate between full and partial plaintext). This also matches above-mentioned constant
loss 7.

One can consider our results for p = 2 to be a generalization of padding into the inner
part, and which technically is equivalent to reducing the capacity by 1, which also means
a constant factor loss. In this bit-wise setting, it is worth noting that there have been
schemes that already adopted this technique to a certain extent. In particular, as we
discuss in our applications in Section 7, the ESCH hash function of the NIST lightweight
cryptography competition SPARKLE [BBC+19] is a special case of sponge-pi, taking
bit rotations with a different offset as NCPs. Our result on sponge-pi, as a corollary,
implies security of the ESCH mode. Likewise, one can implement SpongeWrap-pi as an
authenticated encryption scheme on top of duplex-pi with 3 NCPs (as we also discuss in
Section 7).

However, yet, the true power of our schemes only becomes apparent when operating
on bigger fields. Indeed, taking for example p ≈ 264, one could typically take a sponge
construction with c = 4 and r = 1 to achieve approximately 128-bit security and absorb
with one element of approximately 64 bits at a time. With normal padding, each invocation
then takes an extra permutation call, and padding into the inner part would reduce the inner
part from c = 4 to c = 3, for which the conventional proofs only guarantee approximately
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96-bit security. If we go for the extreme case of Reinforced Concrete (with b = 3, c = 1,
and r = 2), padding would result in a superfluous permutation call for half of the messages
(as r = 2), an element flip in the capacity would turn the existing security bound to
pc−1/2 = O(1) (as c− 1 = 0), but our solution still gives a very decent security bound of
pc/2/7, yielding approximately 128-bit security.

1.5 Outline
We present preliminary material in Section 2. Our finite-field friendly sponges sponge-pi
and sponge-pi$ are presented in Section 3, the keyed sponge fks-pi in Section 4, and
the duplexes duplex-pi and duplex-pi$ in Section 5. The security proofs are gathered in
Section 6. Section 7 includes example applications of our constructions, and we conclude
in Section 8.

2 Preliminaries
We present basic notation in Section 2.1, the notion of distinguishers in Section 2.2, basic
security models in Section 2.3, and we discuss a multicollision result in Section 2.4.

2.1 Notation
We denote A ⊔B as the disjoint union of sets A and B. The empty set is denoted by ϵ.
If S is a finite set, we write x $←− S to denote that x is sampled uniformly from S.

Let n ∈ N such that n > 1. We will abbreviate the set {1, . . . , n} as [n]. Given k < n,
we denote by (n)k the falling factorial of n of depth k, i.e.

∏k−1
i=0 (n− i).

We denote F≤a
p =

⋃a
i=0 Fi

p, F∗
p =

⋃∞
i=0 Fi

p, and F∞
p =

∏∞
i=1 Fi

p. I.e., F∗
p is the set of

all finite tuples of elements of Fp of any length, and F∞
p the set of all infinite tuples of

elements of Fp. Note that F∗
p contains the empty tuple, which we also denote ϵ.

Let s = (s1, s2, . . . , sn) and s′ = (s′
1, s′

2, . . . , s′
m) ∈ F∗

p, and ℓ, ℓ′ ∈ N with 1 ≤ ℓ ≤ ℓ′.
We denote by s∥s′ the tuple (s1, . . . , sn, s′

1, . . . , s′
m). In particular, if s = (1) and s′ is of

the form 0α, we abbreviate the concatenation as 10α. Moreover, if n = m, we denote s⊕ s′

as the element-wise addition of s and s′. Moreover, s[ℓ : ℓ′] refers to the empty tuple if
ℓ > n, and (sℓ, . . . , smax{ℓ′,n}) otherwise. If ℓ ≤ n, we define leftℓ (s) to be s[1 : ℓ] and
rightℓ (s) to be s[n− ℓ : n].

We denote by padrI ,rA
the function that takes as input a tuple M ∈ F∗

p, and returns a
tuple of field blocks M ∈ F≤rI

p × (F≤rA
p )∗ such that only the last block of the tuple may

be incomplete. padrI ,rA
(·) is formally defined in Algorithm 1. In our constructions, this

padding function will be used via a more technical function called padBlockrI ,rA
(·). It

takes as input a tuple M ∈ F∗
p, and returns a tuple of field blocks to be absorbed into

the state, additionally with a label d ∈ {p, f} helping to choose which NCP to apply.
padBlockrI ,rA

(·) is also defined in Algorithm 1. Additionally, we will overload the notation
by denoting padr(·) = padr,r(·) and padBlockr(·) = padBlockr,r(·).

Let RO∞ : F∗
p → F∞

p denote a random oracle in the sense of Bellare and Rogaway [BR93].
From RO∞ we build the function RO : F∗

p × N → F∗
p, which, on input (M, n), returns

RO∞(M)[1 : n]. We will abuse notation and refer to RO as a random oracle.

2.2 Distinguishing Advantage
We will consider security of our modes in a distinguishing setup. Here, we consider a
distinguisher D that is given access to some oracle O ∈ {WR, WI}, denoted DO, and that
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Algorithm 1 Definition of pad and padBlock
Function padrI ,rA
Input: M ∈ F∗

p

Output: M ∈ F≤rI
p × (F≤rA

p )∗

1: ℓ← 1 + ⌈(|M | − rI )/rA⌉
2: M1 ←M [1 : rI ]
3: for 1 ≤ i ≤ ℓ− 1 do
4: Mi+1 ←M [rI +(i−1)rA+1 : rI +irA]
5: end for
6: return (M1, . . . , Mℓ)

Function padBlockrI ,rA
Input: M ∈ F∗

p

Output: (M, d) ∈ (FrI
p ×(FrA

p )∗)×{p, f}
1: if |M | < rI then
2: M ←M∥10−|M |−1 mod rI

3: d← p
4: else if |M | − rI mod rA > 0 then
5: M ←M∥10−(|M |−rI )−1 mod rA

6: d← p
7: else
8: d← f
9: end if

10: return (padrI ,rA
(M), d)

outputs a decision bit b ∈ {0, 1}. We define

∆D (WR ; WI) =
∣∣Pr
[
DWR ⇒ 1

]
− Pr

[
DWI ⇒ 1

]∣∣ .

In our work, the oracle (WR or WI) will be randomized, D has unbounded computational
power and its complexity is solely measured by the number of queries it makes to the
oracle (to be defined shortly). The interaction that D has with its oracle is summarized in a
transcript τ . We denote by DWR (resp., DWI) the probability distribution of transcripts when
interacting with WR (resp., WI). We say that a transcript τ is attainable if Pr[DWI = τ ] > 0,
and denote the set of all attainable transcripts by T .

In the proof, we will use Patarin’s H-Coefficient technique [Pat08,CS14], that allows
us to bound ∆D (WR ; WI) by making a clever separation of transcripts into good and bad
ones, and analyzing the distance between the two worlds for good transcripts and the
probability that a bad transcript occurs for WI.

Lemma 1 (H-Coefficient Technique). Consider a fixed deterministic adversary D. Let
T = Tgood ⊔ Tbad be a partition of T into good and bad transcripts. Suppose that

Pr[DWR = τ ]
Pr[DWI = τ ] ≥ 1− ε, ∀τ ∈ Tgood ,

Pr[DWI ∈ Tbad ] ≤ δ .

Then, we have:

∆D (X ; Y ) ≤ ε + δ .

2.3 Security Models
We will consider two main security models, namely PRF security and indifferentiability.

Indifferentiability. For the keyless constructions in this paper, we use the indifferentiability
framework, first introduced by Maurer et al. [MRH04] and refined to the context of hash
functions by Coron et al. [CDMP05].

Consider a construction C, relying on an ideal primitive P: CP : S∗ → S∗. Consider
a simulator S with the same interface as P. Indifferentiability considers the advantage
of a distinguisher D in distinguishing the real world WR = (CP, P) from the ideal world
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WI = (RO, SRO). In detail the advantage of a distinguisher D in differentiating C from a
random oracle RO with respect to a simulator S is defined as

Adviff
C,S(D) = ∆D

(
CP, P ; RO, SRO) . (1)

Without loss of generality, we assume that D does not make redundant queries, i.e., queries
it already knows the answer to.

PRF Security. For the keyed constructions, we consider multi-user PRF security. Consider
a construction C, relying on an ideal primitive P and keyed from a keyspace K: CP : K×S∗ →
S∗. Assume we consider µ users, all with independent random keys, and denote by CP

Kid
the instance of user id ∈ [µ]. Multi-user PRF security considers the advantage of a
distinguisher D in distinguishing the real world WR =

(
(CP

Kid
)id∈[µ], P

)
from the ideal world

WI =
(
(ROid)id∈[µ], P

)
:

Adv µ-prf
C (D) = ∆D

(
(CP

Kid
)id∈[µ], P ; (ROid)id∈[µ], P

)
. (2)

Without loss of generality, we assume that D does not make redundant queries, i.e., queries
it already knows the answer to.

2.4 Multicollision Result
We will use the following multicollision result of Choi et al. [CLL19, page 187], and later
slightly improved by Lefevre and Mennink [LM24].

Lemma 2. Let q, R ∈ N. Consider the experiment of throwing uniformly at random q
balls in R bins. For u ∈ [R], denote by Su the size of the bin number u. Then,

E
[

max
u∈[R]

Su

]
≤ 2q

R
+ 3 ln(R) + 4 .

The proof of this lemma can be found in [LM24].

3 Arithmetization-Oriented Sponges
We describe our two functions sponge-pi and sponge-pi$ in Section 3.1, and discuss their
security in Section 3.2.

3.1 Specification of sponge-pi and sponge-pi$
In a nutshell, sponge-pi and sponge-pi$ are both based on the sponge construction [BDPV07],
but are (i) optimized in the absorption rate at initialization and in the squeezing rate as
in Naito and Ohta [NO14], and (ii) adopting Hirose’s trick [Hir18] by transforming the
inner state before squeezing using an NCP. Both constructions separate between full and
partial message, by the use of the NCP. The difference between the two constructions is in
the initialization: in sponge-pi, the initial value is selected in advance from a family of µ
pre-determined initial values, whereas in sponge-pi$, they are outputs of a random oracle,
comparable to how it was done in [AKMQ23,GM22].

Setup. Let b, rI , cI , rA, cA, rS , cS ∈ N such that b = rI + cI = rA + cA = rS + cS and
cI ≤ cA. Both constructions operate on top of a cryptographic permutation P : Fb

p → Fb
p.

The sponge-pi construction is defined for a predetermined set of initial values (IV id)id∈[µ],
whereas sponge-pi$ operates on a hash function H : D → FcI

p such that [µ] ⊆ D.
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Algorithm 2 sponge-pi and sponge-pi$
Function CoreSponge
Input: (IV , M , n) ∈ Fb

p × F∗
p × N+

Output: Z ∈ F∗
p

1: S ← IV
2: Z ← ϵ
3: (M1, . . . , Mℓ), d← padBlockrI ,rA

(M )
4: for 1 ≤ i ≤ ℓ− 1 do
5: S ← P (S ⊕ (Mi∥0∗))
6: end for
7: S ← P

(
πd (S ⊕ (Mℓ∥0∗))

)
8: for 1 ≤ i ≤ ⌈n

r ⌉ do
9: Z ← Z∥leftr(S)

10: S ← P(S)
11: end for
12: return Z [1 : n]

Function sponge-pi
Input: (id, M , n) ∈ [µ]× F∗

p × N+
Output: Z ∈ F∗

p

1: IV ← 0rI ∥IV id
2: return CoreSponge(IV , M, n)

Function sponge-pi$
Input: (id, M , n) ∈ [µ]× F∗

p × N+
Output: Z ∈ F∗

p

1: IV ← 0rI ∥H(id)
2: return CoreSponge(IV , M, n)

Consider two NCPs:

πp : FcI
p → FcI

p , πf : FcI
p → FcI

p .

By abuse of notation, given A ∈ F∗
p and B ∈ FcI

p , for d ∈ {p, f} we use πd(A∥B) to refer
to A∥πd(B).

The two NCPs are required to satisfy two constraints. The first constraint ensures no
collision between the NCPs and no fixed-point for πf (note that we do not need to avoid a
fixed-point for πp, because partial messages always get padded to at least one full block):

Constraint 1. For any x ∈ FcI
p , we must have

πp(x) ̸= πf (x) and x ̸= πf (x) .

The second constraint is only relevant in case the user can choose the IV s (i.e., for
sponge-pi), and requires Constraint 1 to apply even over different IV s:

Constraint 2. For any distinct id1, id2 ∈ [µ], we must have{
IV id1 , πf (IV id1), πp(IV id1)

}
∩
{

IV id2 , πf (IV id2), πp(IV id2)
}

= ϵ .

A simple example that satisfies Constraint 1 is to take the identity permutation for πp

and addition by a non-zero constant C on the rightmost cI field elements for πf . In the
context of sponge-pi, if cI > 1, then in order to satisfy Constraint 2, the initial values
could be encoded on the leftmost cI − 1 field elements, while the constant C is added only
to the rightmost field element. If instead cI = 1 and the IV s are generated dynamically
(e.g., via a counter), the procedure for generating IV s can be adapted to ensure that
any new initial value IV must differ from a prior IV ′, IV ′ + C, and IV ′ − C. On the
other hand, if a predefined, arbitrary, list of unique IV s is provided independently of the
construction, then selecting NCPs to meet Constraint 2 is challenging, and in that case,
using the sponge-pi$ variant may be more practical.

Constructions. The two constructions are described in Algorithm 2 and illustrated in
Figure 2.
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IV (·) H
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\
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\

cS
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Figure 2: sponge-pi and sponge-pi$ constructions, with a requested output of n field
elements. The two functions differ in the selection of the IV . For sponge-pi, on input of
id ∈ [µ], the function “IV (·)” selects the initial value IV id, whereas for sponge-pi$ the
initial value is generated by an evaluation of H.

3.2 Security of sponge-pi and sponge-pi$
We will prove the security of both constructions. Here, we will quantify the complexity
of the distinguisher by the number of permutation evaluations required to perform all
computations in the real world. This quantity is denoted by QP . Moreover, with the
construction sponge-pi$, we denote by QH the number of queries made to the hash
function H on the input domain [µ]. We have the following results:

Theorem 1. Let QP ∈ N and (IV id)id∈[µ] ⊂ FcI
p . Let πp and πf be two NCPs satisfying

Constraints 1 and 2. Let C denote the sponge-pi construction based on a random permu-
tation P. There exists a simulator S such that, for any distinguisher D making at most QP
permutation evaluations,

Adviff
C,S(D) ≤ 7QP(QP − 1)

pcA
+ 7µQP

2pcI
+ 3QP

2

pb
+ (3rS ln(p) + 4) QP

pcS
.

Theorem 2. Let QP , QH ∈ N. Let πp and πf be two NCPs satisfying Constraint 1.
Let C$ denote the sponge-pi$ construction based on a random oracle H and a random
permutation P. There exists a simulator S such that, for any distinguisher D making at
most QP permutation evaluations and QH random oracle evaluations on the input domain
[µ],

Adviff
C$,S(D) ≤ 7QP(QP − 1)

pcA
+22QPQH

pcI
+7QH(QH − 1)

2pcI
+3QP

2

pb
+(3rS ln(p) + 4) QP

pcS
.

Even though we stated security of the two constructions in separate theorems (to make
the conditions explicit), the proofs are in fact very similar, and we prove Theorems 1 and 2
simultaneously in Section 6.1.

Interpretation of the Bounds. Ignoring logarithmic factors, the bounds are of the form

Adviff
sponge-pi,S(D) = O

(
QP

2

pcA
+ µQP

pcI
+ QP

pcS

)
,

Adviff
sponge-pi$,S(D) = O

(
QP

2

pcA
+ QHQP

pcI
+
(

QH
2
)

pcI
+ QP

pcS

)
.
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By putting µ = 1, i.e., allowing a single initial value, the former bound is identical to
that of Naito and Ohta [NO14]. The second bound is identical, noting that QH ≤ µ. The
multi-user setting, where the distinguisher may choose from µ initial values, linearly scales
the second term for sponge-pi, de facto reducing the initial capacity cI by a logarithmic
factor (in logp). For sponge-pi$, this multi-user setting leads to an extra term covering
collisions between hash function calls, similar to [AKMQ23,GM22].

In general, to get a balanced bound, one needs pcI /µ ≈ pcA/2 in the case of sponge-pi.
Assume we have a field size around 264, security goal of 2128, and around 264 users. Then,
we need b ≥ 5 and cA = 4, and we can lower cI to 3 and cS to around 2. For the case of
sponge-pi$, if the application accepts any kind of input to H, it is better to take rA = rI .
However, still the squeezing rate can be larger (i.e., rS ≈ rA +cA/2) without any significant
loss in the security.

4 Arithmetization-Oriented Keyed Sponge
We describe our function fks-pi in Section 5.1, and discuss its security in Section 5.2.

4.1 Specification of fks-pi

The fks-pi construction basically turns the full keyed sponge [BDPV12,MRV15] into one
that performs padding using NCPs.

Setup. Let b, r , c ∈ N such that b = r + c and k ≤ b. The construction operates on top of
a cryptographic permutation P : Fb

p → Fb
p. It is furthermore defined for a predetermined

set of initial values (IV id)id∈[µ] from Fb−k
p and an array of keys (Kid)id∈[µ] from Fk

p.
As in Section 3, consider two NCPs (cf. Algorithm 3):

πp : Fb
p → Fb

p , πf : Fb
p → Fb

p .

The NCPs are required to satisfy Constraint 3.

Constraint 3. For any M, M ′ ∈ Fb
p, and any distinct

F·(·), G·(·) ∈ {(x, y) 7→ x + y, (x, y) 7→ πf (x + y), (x, y) 7→ πp(x + y)} ,

we must have:

Pr
[
Fx(M) = Gx′(M ′) ; x, x′ $←− Fb

p

]
≤ ξ

pb , (3)

Pr
[
Fx(M) = Gx(M ′) ; x

$←− Fb
p

]
≤ ξ

pb , (4)

for some small ξ ∈ Z≥0.

To clarify Constraint 3, we give the following example.

Example 1. Fix distinct C, Ĉ ∈ Fb
p \ {0, 1}, and consider:

πp(x) = C · x ,

πf (x) = Ĉ · x .

Then, it can be easily verified that πp and πf satisfy (3) and (4) for ξ = 1.
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Algorithm 3 fks-pi
Function fks-pi
Input: (id, M , n) ∈ [µ]× F∗

p × N+
Output: Z ∈ F∗

p

1: S ← P(Kid ∥ IV id)
2: Z ← ϵ
3: (M1, . . . , Mℓ), d← padBlockb(M )
4: for 1 ≤ i ≤ ℓ− 1 do
5: S ← P (S ⊕Mi)
6: end for
7: S ← P

(
πd (S ⊕Mℓ)

)
8: for 1 ≤ i ≤ ⌈n

r ⌉ do
9: Z ← Z ∥ leftr (S)

10: S ← P(S)
11: end for
12: return Z [1 : n]

Kid

IV id

P P P P P P Pπd

M ∈ (Fp)∗ padBlockb d ∈ {p, f} leftn Z ∈ (Fp)n

\

k

\

b− k

\

r

\

c

\

n

Figure 3: fks-pi construction, with a requested output of n field elements.

Construction. The construction is described in Algorithm 3 and illustrated in Figure 3.

4.2 Security of fks-pi

In this section, we describe the security of fks-pi. We consider a distinguisher D as
described in Section 2.3. The number of permutation queries made by D is denoted by
QP and the number of construction queries made by D is measured by the number of
permutation evaluations that would have been required in the real world to compute the
construction calls made by the distinguisher. This quantity is denoted by QC .

Furthermore, To facilitate the description, let us represent (IV id)id∈[µ] with two lists,
L1 and L2, defined as follows: L1 contains all elements appearing in (IV id)id∈[µ] without
any repetition. L2, having the same length as L1, records the multiplicity of each element.
In other words, the sth element in L1 appears L2[s] times in (IV id)id∈[µ]. From this, we
define:

us = L2[s] , umax = max
s

us .

We have the following theorem:

Theorem 3. Let QC , QP ∈ N, (IV id)id∈[µ] ∈
(
Fb−k

p

)µ and let umax and us be as above.
Let πp and πf be two NCPs satisfying Constraint 3 with parameter ξ. Let C denote the
fks-pi construction based on a random permutation P. For any distinguisher D making at
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most QP permutation evaluations and QC construction queries, we have:

Adv µ-prf
C (D) ≤

∑
s

us(us − 1)
pk+1 + QPumax

pk + 9ξQC
2

pb + 28QCQP

pb + 14(6r + 8)QP

pc . (5)

The proof of Theorem 3 is given in Section 6.2.

Interpretation of the Bound. In practice QC ≪ QP and ξ is a small constant, this means
that at a high level, the bound is of the form:

O

(∑
s

us(us − 1)
pk+1 + QPumax

pk + QCQP

pb + QP

pc

)
.

Without loss of generality, we ignore constant and logarithmic factors. We first consider
the most favorable case for the multi-user setting, i.e., when all users have distinct
IV s. Then, fks-pi is generically secure as long as QP ≪ min

{
pk, pb/QC , pc

}
and QC ≪

min
{

pb/2, pc, pk
}

. For instance, if p ≈ 232, and assuming that µ ≪ 232 and QC ≪ 264,
then taking b, c, and k as small as respectively 6, 4, and 4 guarantees 128 bits of security,
and a throughput of 2 field elements per permutation call. On the other hand, if all users
share the same IV , the key size needs to be increased by a factor of logp(µ) in order to
maintain 128 bits of security.

5 Arithmetization-Oriented Duplex
We describe our two functions duplex-pi and duplex-pi$ in Section 5.1, and discuss their
security in Section 5.2.

5.1 Specification of duplex-pi and duplex-pi$
The duplex-pi and duplex-pi$ constructions are based on the simple duplex construc-
tion [BDPV11a], but employ NCPs per duplexing call in lieu of padding. The case is
significantly more subtle than the case of sponge-pi, sponge-pi$, and fks-pi, because
duplexing calls can have various different roles depending on the use case, and the NCPs
need to account for that. The difference between the two constructions is, just like in
Section 3, in the initialization: in duplex-pi, the initial value is selected in advance from
a family of µ pre-determined initial values, whereas in sponge-pi$, they are outputs of a
random oracle.

Setup. Let b, rI , cI , rA, cA, rS , cS ∈ N such that b = rI + cI = rA + cA = rS + cS and
cI ≤ cA. Both constructions operate on top of a cryptographic permutation P : Fb

p → Fb
p.

The duplex-pi construction is defined for a predetermined set of initial values (IV id)id∈[µ],
whereas duplex-pi$ operates on a hash function H : D → FcI

p such that [µ] ⊆ D.
The duplex constructions differ from the sponge constructions in that every permutation

evaluation is a duplex call that absorbs data and squeezes data. Depending on the
application, individual duplexing calls may have different roles and we need to accommodate
for this (e.g., domain separation) by using more NCPs. In detail, we consider the following
family of NCPs: (

πd
i : FcI

p → FcI
p

)
i∈[ζ], d∈{p,f} .

This family of NCPs is required to satisfy two constraints. In detail, below Constraint 4
applies to both constructions and Constraint 5 applies only to the case where the user can
choose the IV s (i.e., for duplex-pi).
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Constraint 4. For any x ∈ FcI
p and any distinct (i1, d1), (i2, d2) ∈ [ζ]× {p, f}, we must

have

πd1
i1

(x) ̸= πd2
i2

(x) .

A simple example that satisfies Constraint 4 is to encode each (i, d) with a unique
constant ci,d and then take πd

i (x) = x⊕ ci,d.

Constraint 5. For any distinct id1, id2 ∈ [µ] and any (not necessarily distinct) (i1, d1),
(i2, d2) ∈ [ζ]× {p, f}, we must have

πd1
i1

(IV id1) ̸= πd2
i2

(IV id2) .

Constructions. A duplex is a stateful object, and has two interfaces, “init” and “next”.
There have been various suggestions on what exactly would be captured by an init (e.g.,
should the first next call be part of an init or not?), and how a next call should be defined
(e.g., should a next call start at absorbing plaintext, or at permuting the state?). Mennink
gave a treatment on how the phasing of the keyed duplex evolved [Men23, Section 3.4].
However, as we focus on the unkeyed duplex (and we will in fact prove its indifferentiability),
we will adopt the convention that a next call consists of absorbing-permuting-squeezing
(as in the original duplex proposal [BDPV11a] but also in the work of Degabriele et
al. [DFG23]) and that an init call initializes the state and does the initial next call (which
happens at a different rate):

• “init” initializes an instance of the duplex object. It takes as input the value id to
initialize the state (here, the two constructions duplex-pi and duplex-pi$ differ)
with the correct IV at its inner part. It additionally takes as input a message block
M ∈ F∗

p with |M | ≤ rI and a domain separator i. It pads the message block if needed,
using padBlockrI

, absorbs it into the state, applies the appropriate NCP, permutes
and returns the leftmost rS field elements of the state;

• “next” duplexes the state. It takes as input a message block M ∈ F∗
p with |M | ≤ rA

and a domain separator i. It pads the message block if needed, using padBlockrA
,

absorbs it into the state, applies the appropriate NCP, permutes and returns the
leftmost rS field elements of the state.

The scheme can be parallelized over different instances by incorporating a unique identifier
u alongside a state that gets initialized. We admit that for every duplexing call a NCP
is applied on the inner part of the state. This might seem as a lot of overhead at first
sight, but these NCPs can be implemented with constant additions, and the NCP that
is expected to be used most often can be set to the identity (in fact, the original duplex
construction [BDPV11a] did 10∗-padding for every next call). Finally, we remark that,
if M1, M2 ∈ Fp, then absorbing first M1 and then M2 does not necessarily give the same
output as absorbing M1∥M2 together. However, this constraint is not so confusing in
practice, since typically, before a domain separator is applied, the message blocks are first
of full length, and only the last block is potentially not full.

The two constructions are described in Algorithm 4 and illustrated in Figure 4. Here,
in the illustration, the next-wise padding is integrated in the figure for visibility.

5.2 Security of duplex-pi and duplex-pi$
We prove security of both constructions in this section. Before doing so, we remark that
security of the original duplex was derived from that of the sponge [BDPV11a], and one
might wonder whether we can likewise reduce the security of duplex-pi to sponge-pi (or
duplex-pi$ to sponge-pi$). However, our description of duplex-pi, and in particular
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Algorithm 4 duplex-pi and duplex-pi$
Function duplex-pi.init
Input: (id, M , i) ∈ [µ]× F≤rI

p × [ζ]
Output: Z ∈ FrA

p

1: IV ← 0rI ∥IV id
2: return CoreDuplex.init(IV , M, i)

Function duplex-pi.next
Input: (M , i) ∈ F≤rA

p × [ζ]
Output: Z ∈ FrA

p

1: return CoreDuplex.next(M, i)

Function CoreDuplex.init
Input: (IV , M , i) ∈ Fb

p × F≤rI
p × [ζ]

Output: Z ∈ FrS
p

1: S ← IV
2: M , d← padBlockrI

(M )
3: S ← P

(
πd

i

(
S ⊕ (M∥0∗)

))
4: Z ← leftrS (S)
5: return Z

Function duplex-pi$.init
Input: (id, M , i) ∈ [µ]× F≤rI

p × [ζ]
Output: Z ∈ FrS

p

1: IV ← 0rI ∥H(id)
2: return CoreDuplex.init(IV , M, i)

Function duplex-pi$.next
Input: (M , i) ∈ F≤rA

p × [ζ]
Output: Z ∈ FrS

p

1: return CoreDuplex.next(M, i)

Function CoreDuplex.next
Input: (M , i) ∈ F≤rA

p × [ζ]
Output: Z ∈ FrS

p

1: M , d← padBlockrA
(M )

2: S ← P
(
πd

i

(
S ⊕ (M∥0∗)

))
3: Z ← leftrS (S)
4: return Z

0

IV (·) H

id
duplex-pi duplex-pi$

πf
i1

M1

\
\

rI

cI

P

\

rA

\rS − rA

πp
i2

M2∥10∗Z1

\

cS

P

\

rA

\rS − rA

πf
i3

M3Z2

\

cS

P

\

rA

\rS − rA

πf
i4

M4Z3

\

cS

P
\

rA

\rS − rA

πp
i5

M5∥10∗Z2

\

cS

P

Z4

\

rS

Figure 4: duplex-pi and duplex-pi$ constructions. Note that the padding function
padBlock is integrated inside the figure for visibility. The two functions differ in the
selection of the IV . For duplex-pi, on input of id ∈ [µ], the function “IV (·)” selects the
initial value IV id , whereas for duplex-pi$ the initial value is generated by an evaluation
of H.

the use of various NCPs to capture domain separators, is much more general. Stated
differently, sponge-pi and sponge-pi$ have a fixed pattern of absorb-then-squeeze, which
means that one can get away with three NCPs (counting the identity as one), but in the
duplex more NCPs may be required and the conditions are also more restrictive.

To formally argue indifferentiability of the duplex constructions, we have to compare its
construction with a special random object, an online random oracle, or ORO. It extends the
notion of a RO from Section 2 in that it is stateful and repeats outputs when the sequence
of duplexing calls is repeated. We take the formalism of Degabriele et al. [DFG23], which is
a keyless version of the ideal extendable input function (IXIF) of Daemen et al. [DMV17].
The ORO is defined in Algorithm 5. Here, the function append takes as input a list and an
object and appends the object to the list.

Before going to the final theorems, we wish to note that the counting of the distin-
guisher’s resources specified in Section 3.2 still applies, though it becomes slightly more
delicate. In a nutshell, for each duplexing call, we can define a path that lead to that
duplexing call (this is exactly the path path in the ORO functionality of Algorithm 5). QP
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Algorithm 5 ORO
Function ORO.init
Input: (id, M , i) ∈ [µ]× F≤rI

p × [ζ]
Output: Z ∈ FrS

p

1: path ← (id, M , i)
2: Z ← RO(path, rS)
3: return Z

Function ORO.next
Input: (M , i) ∈ F≤rA

p × [ζ]
Output: Z ∈ FrS

p

1: path ← path.append(M , i)
2: Z ← RO(path, rS)
3: return Z

then count the number of permutation evaluations as well as the number of unique paths
in the evaluation of the duplex. In other words, every init or next call counts as 1 in the
number of queries, except if

• in the real world, a permutation call repeats because the associated path had already
occurred before, or

• in the ideal world, the associated path had already been queried to RO before.

This method of counting might appear counter intuitive, and has led to misinterpretations
(see, e.g., Lefevre [Lef24]). However, doubly counting repeated paths, given the current
exiting proof techniques, seems to unavoidably lead to a loss in the tightness of the bound.
The underlying reason is that current security proofs consider bad events that are triggered
by fresh randomness only (i.e., only RO or permutation calls with new inputs), and they
do not keep track of repeated paths.

We are now ready to prove security of duplex-pi and duplex-pi$.

Theorem 4. Let QP ∈ N, (IV id)id∈[µ] ⊂ FcI
p . Let

(
πd

i : FcI
p → FcI

p

)
i∈[ζ], d∈{p,f} be a family

of NCPs satisfying Constraints 4 and 5. Let C denote the duplex-pi construction based
on a random permutation P. There exists a simulator S such that, for any distinguisher D
making at most QP permutation evaluations,

Adviff
C,S(D) ≤
(4ζ2 − 2ζ + 1)QP(QP − 1)

pcA
+ (4ζ2 − 2ζ + 1)µQP

2pcI
+ 3QP

2

pb
+ (3rS ln(p) + 4) QP

pcS
.

Theorem 5. Let QP , QH ∈ N. Let
(
πd

i : FcI
p → FcI

p

)
i∈[ζ], d∈{p,f} be a family of NCPs sat-

isfying Constraint 4. Let C$ denote the duplex-pi$ construction based on a random oracle
H and a random permutation P. There exists a simulator S such that, for any distinguisher
D making at most QP permutation evaluations and QH random oracle evaluations,

Adviff
C$,S(D) ≤ (4ζ2 − 2ζ + 1)QP(QP − 1)

pcA
+ (4ζ2 − 2ζ + 1)QH(QH − 1)

2pcI

+ 3(4ζ2 − 2ζ + 1)QPQH

pcI
+ 3QP

2

pb
+ (3rS ln(p) + 4) QP

pcS
.

The proofs of Theorems 4 and 5 are very similar to each other, and are jointly given in
Section 6.3.

Interpretation of the Bounds. Ignoring logarithmic factors, the bounds are of the form

Adviff
duplex-pi,S(D) = O

(
ζ2QP

2

pcA
+ ζ2µQP

pcI
+ QP

pcS

)
,

Adviff
duplex-pi$,S(D) = O

(
ζ2QP

2

pcA
+ ζ2QH(QH − 1)

pcI
+ ζ2QHQP

pcI
+ QP

pcS

)
.



112 To Pad or Not to Pad?

Algorithm 6 Setup of the simulators S and S$ for sponge-pi and sponge-pi$
Function S.Initialize()

1: S.CP ← ϵ
2: S.IV← {(IV id , id)}id∈[µ]

Function S.ValidIV()
1: S ← ϵ
2: for all (IV id, id) ∈ S.IV do
3: S ← S ∪ {(0rI ∥IV id , id)}
4: end for
5: return S

Function S$.Initialize ()
1: S$.CP ← ϵ
2: S$.CH ← ϵ

Function S$.ValidIV()
1: S ← ϵ
2: for all (id, h) ∈ S$.CH do
3: S ← S ∪ {(0rI ∥h, id)}
4: end for
5: return S

Compared to the bounds of sponge-pi and sponge-pi$, we obtain a loss quadratic in
the number of NCPs. However, the actual number of required NCPs is fixed by the
applications and is typically small. For example, in Section 7, we show that ζ = 2 suffices
for authenticated encryption. In this case, with appropriately chosen parameters cI and cS
(as discussed in Section 3.2), duplex-pi and duplex-pi$ achieve indifferentiability security
up to approximately ≈ pcA/2 queries.

6 Security Proofs
6.1 Proofs of Theorems 1 and 2
In this section we will provide a joint proof for Theorems 1 and 2. We begin by introducing
some useful notation and defining the simulator. Then, we introduce an intermediate
world, decompose the distance, and bound each component.

Setup. The simulator, named S for sponge-pi and S$ for sponge-pi$, stores its primitive
queries in a table CP, which comprises tuples of the form (X, Y, dir), where the image of
X by SP is defined to be Y , and the query was made in the direction dir ∈ {fwd, inv}.
Moreover, for sponge-pi$, the simulator has an additional oracle S$H, that produces
uniformly random answers, just like a random oracle H. The simulator further stores these
hash queries in a table CH that contains tuples of the form (id, h), where the image of id
by the oracle is h. Moreover, let

C =
{

CP for sponge-pi,,

(CP, CH) for sponge-pi$ .

Let us further define a function ValidIV(), as defined in Algorithm 6 for both simulators.
This function, when called, returns a set of tuples of the form (IV , id) such that IV ∈ Fb

p

corresponds to a valid initial sponge state. In the case of the construction sponge-pi, IV
can be of the form 0rI ∥IV id for all id ∈ [µ] while for sponge-pi$, the (IV , id)s are of the
form (0rI ∥h, id), for all (id, h) ∈ CH at the moment of the query. To keep consistency, id
will be used as a label for the RO call that the simulator makes.

Graph Notation. From its table C, the simulator derives a tree construction. The roots
are of the form [id], where there exists (IV , id) ∈ ValidIV(). The other nodes are elements
in Fb

p. Given X, Y ∈ Fb
p, mp ∈ (Fp)≤rA−1 \ {ϵ}, and mf ∈ (Fp)rA we define four kinds of

edges:

• X mf /a−−−→ Y denotes that (X ⊕ (mf∥0cA), Y , dir) ∈ CP;
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• X −−−→ Y is a special case of the above, and it denotes that (X, Y, dir) ∈ CP;

• X mp/p−−−→ Y denotes that (πp (X ⊕ (mp∥10∗)) , Y, dir) ∈ CP;

• X mf /f−−−−→ Y denotes that (πf (X ⊕ (mf∥0cA)) , Y , dir) ∈ CP.

The symbol a stands for absorb, while p and f indicate a last message with respectively a
partial and a full block. Similarly, given Y ∈ Fb

p, (IV , id) ∈ ValidIV(), mp ∈ (Fp)≤rI −1,
and mf ∈ (Fp)rI , we define three kinds of edges between a root node [id] and Y as follows:

• [id] mf /a−−−→ Y denotes that (IV ⊕ (mf∥0cI ), Y , dir) ∈ CP;

• [id] mp/p−−−→ Y denotes that (πp (IV ⊕ (mp∥10∗)) , Y, dir) ∈ CP;

• [id] mf /f−−−−→ Y denotes that (πf (IV ⊕ (mf∥0cI )) , Y , dir) ∈ CP.

The set of absorbing paths includes paths that correspond to intermediate states whose
nodes would be in the real world intermediate states during the absorbing phase. These
paths are of the form

[id] m1/a−−−→ S2
m2/a−−−→ · · · mn/a−−−−→ Sn+1 .

We will abbreviate those as [id] m1∥···∥mn/a−−−−−−−−→ Sn+1. The set of squeezing paths include
paths whose nodes would be in the real world intermediate states during the squeezing
phase. They are of the form

[id] m1/a−−−→ S2
m2/a−−−→ · · · mn−1/a−−−−−→ Sm

mn/d−−−→ Z1 −→ Z2 −→ · · · −→ Zℓ ,

for d ∈ {p, f}. We will abbreviate this as [id] m1∥···∥mn,ℓ−−−−−−−−→ Zℓ. Note that the /d symbol
in the path is not included. This is because the message blocks are not padded in this
graph representation, so that the length of m1∥ · · · ∥mn provides sufficient information
to deduce whether the last call uses a full or partial block. The set of paths that are
valid corresponds to the union of absorbing paths with squeezing paths. We make a clear
distinction between them, since the simulator only needs to guarantee consistency for
squeezing paths. Moreover, we define Rooted(C) as the set of rooted nodes Z ∈ Fb

p from
which one can build a valid path [id] M/a−−−→ Z or [id] M,ℓ−−→ Z.

Even when there are no collisions, there might be some overlap between squeezing
paths and absorbing paths when πp is the identity permutation. For instance, assume that
(IV ⊕m∥10cI , S1, fwd), (S1, S2, fwd) ∈ CP for some (IV , id) ∈ ValidIV(), then this leads
to two paths:

[id] m/p,2−−−−→ S2 and [id] m∥1∥0rA /a−−−−−−−→ S2 .

Note that this overlap also happens with the plain sponge construction.

The Simulator. The simulator keeps track of the graph construction and uses it to
output consistent answers. It is essentially the same sort of simulator as in the sponge
construction [BDPV08], but it manages a more complex set of valid paths. Since sponge-pi
and sponge-pi$ differ only in the initial state, SP and S$P (resp., S−1

P and S$−1
P ) are the

same. Algorithm 7 describes the simulators.
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Algorithm 7 Simulator interfaces for sponge-pi and sponge-pi$
Function S−1

P (Y ) (same for S$−1
P )

1: if ∃(X, Y ) ∈ S.CP then
2: return Y
3: end if
4: X

$←− Fb
p

5: S.CP ← S.CP ∪ {(X, Y )}
6: return X

Function S$H(id)
1: if ∃(id, h) ∈ S$.CH then
2: return h
3: end if
4: h

$←− FcI
p

5: S$.CH ← S$.CH ∪ {(id, h)}
6: return h

Function SP(X) (same for S$P)
1: if ∃(X, Y ) ∈ S.CP then
2: return X
3: end if
4: Y

$←− Fb
p

// Start of squeezing phase with partial block
5: if ∃ (IV , id) ∈ S.ValidIV(), S ∈ Fb

p, M ∈ F∗
p \ {ϵ}, and m ∈ F≤rA−1

p \ {ϵ} such that
[id] M/a−−−→ S and X = πp (S ⊕m∥10∗) then

6: Yo ← RO((id, M∥m), rS)
7: Yi

$←− FcS
p

8: Y ← Yo ∥ Yi

9: end if
// Start of squeezing phase with full block
10: if ∃ (IV , id) ∈ S.ValidIV(), S ∈ Fb

p, M ∈ F∗
p \ {ϵ}, and m ∈ FrA

p such that [id] M/a−−−→ S

and X = πf (S ⊕m∥0cA) then
11: Yo ← RO((id, M∥m), rS)
12: Yi

$←− FcS
p

13: Y ← Yo ∥ Yi

14: end if
// In the middle of a squeezing phase
15: if ∃ (IV , id) ∈ S.ValidIV(), M ∈ F∗

p, and ℓ ≥ 1 such that [id] M,ℓ−−→ X then
16: Yo ← RO((id, M), (ℓ + 1)rS)[ℓrS : (ℓ + 1)rS − 1]
17: Yi

$←− FcS
p

18: Y ← Yo ∥ Yi

19: end if
// Start of squeezing phase from IV with one partial block
20: if ∃ (IV , id) ∈ S.ValidIV() and m ∈ F≤rI −1

p such that X = πp (IV ⊕m∥10∗) then
21: Yo := RO((id, m), rS)
22: Yi

$←− FcS
p

23: Y ← Yo ∥ Yi

24: end if
// Start of squeezing phase from IV with one full block
25: if ∃ (IV , id) ∈ S.ValidIV() and m ∈ FrI

p such that X = πf (IV ⊕m∥0cI ) then
26: Yo := RO((id, m), rS)
27: Yi

$←− FcS
p

28: Y ← Yo ∥ Yi

29: end if
30: S.CP ← S.CP ∪ {(X, Y )}
31: return Y
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Construction: RO
Primitive: (SP[RO], S−1

P )

WI: Ideal World (sponge-pi)

Construction: RO
Primitive: (SP[RO], S−1

P , S$H)

WI: Ideal World (sponge-pi$)
Construction: CSP[RO]

Primitive: (SP[RO], S−1
P )

WS: Intermediate World (sponge-pi)

Construction: CSP[RO]

Primitive: (SP[RO], S−1
P , S$H)

WS: Intermediate World (sponge-pi$)
Construction: CP

Primitive: (P,P−1)

WR: Real World (sponge-pi)

Construction: CP

Primitive: (P,P−1,H)

WR: Real World (sponge-pi$)

Figure 5: Worlds involved in the security proof.

World Splitting. Similarly to [NO14], we introduce an intermediate world WS, as illustrated
in Figure 5. In this world, the construction oracle gives access to sponge-pi or sponge-pi$,
based on the simulator, which is itself based on a random oracle hidden from the adversary.
When dealing with sponge-pi$, WS additionally includes the simulator S$H. For the sake of
the proof, we introduce a table ĈP, that comprises tuples of the form (X, Y, dir, O), where
O = D means that the query was from the distinguisher, else O = C means that the query
comes from the construction. Similarly with sponge-pi$, define ĈH as an extension of CH,
that comprises tuples of the form (I, h, O), where the image of I by H is h, and the query
comes from either the distinguisher (i.e., O = D), or the construction (i.e., O = C). With
these extended tables, we can differentiate the set of rooted nodes: RootedD(Ĉ) represents
the rooted nodes reached solely through distinguisher queries.

We have

Adviff
C,S(D) ≤ ∆D (WR ; WS) (6)

+ ∆D (WS ; WI) . (7)

We first bound (6), which boils down to evaluating the distance between the simulator
and a random permutation. Remark that S$H is a random oracle that is independent from
SP and S−1

P . Then, since SP makes random oracle calls with disjoint inputs for any fresh
query, it behaves like a random function. This distance can thus be upper bounded by the
PRP/PRF switching lemma, and we obtain

∆D (WR ; WS) ≤
(

QP
2
)

pb
≤ QP

2

pb
. (8)

The remainder of the proof is dedicated to the analysis of (7).

Bad Events. Let Q denote the total number of queries made by the distinguisher, so
that Q = QP for sponge-pi, and Q = QP + QH for sponge-pi$. For i ∈ [Q], let CP[i]
and CH[i] denote the state of respectively CP and CH after the first i queries. We define a
family of bad events, indexed by a query index i ∈ [Q], and defined over C. sponge-pi
and sponge-pi$ only diverge in the definition of bad events related to the initial values.

• CollP[i]: ∃(X, Y, dir) ∈ CP[i] \CP[i− 1], (X ′, Y ′, dir′) ∈ CP[i− 1] such that{
rightcA

(Z) , πp
(
rightcA

(Z)
)

, πf
(
rightcA

(Z)
)}
∩{

rightcA
(Z ′) , πp

(
rightcA

(Z ′)
)

, πf
(
rightcA

(Z ′)
)}
̸= ϵ ,
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where

(Z, Z ′) =
{

(Y, Y ′) if dir = fwd ,

(X, X ′) otherwise ;

• ConnectP[i]: ∃(X, Y, dir) ∈ CP[i] \CP[i− 1], (X ′, Y ′, dir′) ∈ CP[i− 1] such that{
rightcA

(Z) , πp
(
rightcA

(Z)
)

, πf
(
rightcA

(Z)
)}
∩{

rightcA

(
Z̄ ′) , πp

(
rightcA

(
Z̄ ′)) , πf

(
rightcA

(
Z̄ ′))} ̸= ϵ ,

where

(Z, Z̄ ′) =
{

(Y, X ′) if dir = fwd ,

(X, Y ′) otherwise ;

• Guess[i]: ∃(X, Y, dir) ∈ CP[i] \CP[i − 1]; such that Y ̸∈ RootedD(Ĉ[i]), but Y ∈
Rooted(Ĉ[i]);

• ConnectIV[i] (for sponge-pi only): ∃(X, Y, dir) ∈ CP[i], id ∈ [µ] such that{
rightcI

(Z) , πp
(
rightcI

(Z)
)

, πf
(
rightcI

(Z)
)}
∩{

IV id, πp (IV id) , πf (IV id)
}
̸= ϵ ,

where

Z =
{

Y if dir = fwd ,

X otherwise ;

• CollH[i] (for sponge-pi$ only): ∃(id, h) ∈ CH[i] \CH[i− 1], (id ′, h′) ∈ CH[i− 1] such
that {

h, πp (h) , πf (h)
}
∩
{

h′, πp (h′) , πf (h′)
}
̸= ϵ ;

• ConnectPH[i] (for sponge-pi$ only):

– either ∃(X, Y, dir) ∈ CP[i] \CP[i− 1], (id, h) ∈ CH[i− 1] such that{
h, πp (h) , πf (h)

}
∩
{

rightcI
(Z) , πp

(
rightcI

(Z)
)

, πf
(
rightcI

(Z)
)}
̸= ϵ ,

where

Z =
{

Y if dir = fwd ,

X otherwise ,

– or ∃(id, h) ∈ CH[i] \ CH[i − 1], (X, Y, dir) ∈ CP[i − 1] such that there exists
Z ∈ {X, Y } with{

h, πp (h) , πf (h)
}
∩
{

rightcI
(Z) , πp

(
rightcI

(Z)
)

, πf
(
rightcI

(Z)
)}
̸= ϵ .

We define BadIV[i] as follows:

BadIV[i] =
{

ConnectIV[i] for sponge-pi ,

CollH[i] ∨ConnectPH[i] for sponge-pi$ ,
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and Bad[i] := CollP[i]∨ConnectP[i]∨BadIV[i]∨Guess[i]. Moreover, for any of those
bad events Event[i], let Event be

Q∨
i=1

Event[i] .

The bad events CollP ∨ ConnectP ∨ BadIV ensure that the simulator responds
consistently with respect to the random oracle. Intuitively, CollP addresses collisions
in the inner part of the construction, modulo the application of the NCPs, ensuring
that each simulator query is mapped to at most one squeezing path. The absence of
ConnectP guarantees that an unrooted path cannot later become rooted, which is crucial
for maintaining consistency in the simulator’s responses. Finally, BadIV ensures that
the rightmost cI field elements of the initial values appear only at the roots of the
tree construction and that the simulator does not connect to the IVs via inverse calls.
Additionally, for sponge-pi$, this bad event ensures that a hash evaluation does not
inadvertently create a new valid path and that the hash outputs adhere to Constraint 2.

WS Versus WI as Long as No Bad. We will show that, conditioned on ¬Bad, the worlds
WI and WS have the same distribution. This requires two steps. The first step, detailed
in Lemma 3, shows that as long as no bad event occurs, the simulator in WS provides
consistent answers. However, this alone is not sufficient because the simulator in WS has
more information than the one in WI. To address this, we need to ensure that the additional
knowledge available to the simulator in WS does not provide it with extra information.
Intuitively, this is ensured by the absence of Guess. Lemma 4 makes explicit that WS and
WI behave identically until Bad occur.

Lemma 3. Let C be either the sponge-pi or sponge-pi$ construction, based on the
simulator, which is itself based on a random oracle RO. For any M ∈ p∗ such that there
exists a valid path [id] M,ℓ−−→ Z in C, where (IV , id) ∈ ValidIV(), we have

C(id, M, ℓrS) = RO((id, M), ℓrS) .

Proof. By ¬ConnectP ∧ ¬BadIV, the valid paths are expanded from left to right, and
only with forward queries. For instance, if we have a valid path [id] m1/a−−−→ S1

m2/a−−−→ S2
with m1 ∈ (Fp)rI , m2 ∈ (Fp)rA , then the following queries were made in order: (i) (for the
case of sponge-pi$) query to S$H with input id, and output IV id; (ii) query to SP with
input 0rI ∥IV id ⊕m1∥0cI , and output S1; (iii) query to SP with input S1 ⊕m2∥0cA , and
output S2.

Keeping this in mind, we argue next that ¬Bad prevents from having two valid paths
of the form [id1] P1−→ S1 and [id2] P2−→ S2 with S1 ̸= S2, but such that a subsequent forward
query with input X and output Y extends these two paths into two valid, squeezing paths
that look like [id1] P ′

1−→ Y and [id2] P ′
2−→ Y . The list of possible valid paths [ide] Pe−→ Se for

e ∈ {1, 2} and possibilities for X are the following:

a. ∃Me ∈ F∗
p\{ϵ}, me ∈ F≤rA−1

p \{ϵ}, and [ide] Me/a−−−→ Se such that X = πp(Se⊕m∥10∗);

b. ∃Me ∈ F∗
p \ {ϵ}, m ∈ FrA

p , and [ide] Me/a−−−→ Se such that X = πf (Se ⊕m∥0cA);

c. ∃Me ∈ F∗
p, ℓ ≥ 1, and [ide] Me,ℓ−−−→ Se such that X = Se;

d. ∃m ∈ F≤rI −1
p , (IV e, ide) ∈ ValidIV() such that X = πp (IV e ⊕m∥10∗) (i.e., Se =

IV e);
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e. ∃m ∈ FrI
p , (IV e, ide) ∈ ValidIV() such that X = πf (IV e ⊕m∥0cI ) (i.e., Se = IV e).

The initial values IV e are never present in the middle of a path thanks to ¬BadIV.
Moreover, thanks to Constraint 2 for sponge-pi and ¬CollH for sponge-pi$, it is not
possible that two different initial values are bound to the same permutation call. Moreover,
¬CollP prevents that two forward permutation calls collide on their inner part modulo
application of the permutations πd. Considering all possible combinations, we conclude
that having two valid, converging paths as described above is impossible.

Now, assume that we have two paths sharing the same node, i.e., there exists S ∈
Fb

p, (IV 1, id1), (IV 2, id2) ∈ ValidIV() and two path labels P1, P2 with (id1, P1) ̸= (id2, P2)
such that [id1] P1−→ S and [id2] P2−→ S. Thanks to the previous paragraph, and ¬BadIV,
this means that the intermediate states of both paths are pairwise the same, but that the
paths can be read differently. First of all, remark that with Constraint 2 for sponge-pi
and ¬CollH for sponge-pi$ we must have id1 = id2. Finally, thanks to Constraint 1 and
the absence of Bad, this overlapping does not involve confusing ·/f with ·/p paths and ·/f
with ·/a paths. In the event where πp(x) = x, this leaves us with the only possibility where
path P1 is still in the absorption phase, while path P2 is in the squeezing phase. For such
a scenario, in order to extend P1 into a squeezing path (which would require consistent
answers), either the permutation πf , or a non-zero message block must be added/applied
to the state, which will therefore yield to an extended path P ∗

1 that diverges from any
valid extension of P2. This is therefore not problematic for the consistency.

To summarize, as long as no Bad occurs, we only have to take care of the consistency
of the answers of the forward simulator. This simulator, in Algorithm 7 contains 5 “if”
conditions, which cover all possible scenarios where the query extends any path to a
squeezing path. These “if” conditions are analyzed in the second paragraph of the current
proof, and we showed as long as no Bad occurs there is at most one path that satisfies
them. Moreover, such a path can only satisfy one of the “if” conditions. Therefore, the
simulator is consistent with respect to the random oracle.

We finally argue that WI and WS are identically distributed as long as no bad occurs.

Lemma 4. We have

Pr
[
DWI ⇒ 1 | ¬Bad

]
= Pr

[
DWS ⇒ 1 | ¬Bad

]
.

Proof. We already proved in Lemma 3 that the simulator in WS replies consistently with
respect to the random oracle, but this is insufficient. Indeed, another difference between
WS and WI is that WS is indirectly aware of the construction queries made by the adversary.
If we were in the setting of public indifferentiability [YMO09,DRS09,MPS12], this would
not be a problem, as in that setting the simulator in the ideal world is aware of the
construction queries. However, public indifferentiability is weaker than indifferentiability,
and we need to further argue that ¬Bad makes them not distinguishable. The bad
event Guess guarantees that the simulator cannot guess a rooted path that comes from
construction queries. For instance, if there exists (IV , id) ∈ ValidIV() and a valid path
[id] m2/a−−−→ S1

m2/f−−−→ S2 that was generated only from construction queries, then ¬Guess
guarantees that the adversary will never make an inverse query with input S1 or S2,
nor a forward query with input πf (S1 ⊕ m2∥0cA) before the forward query with input
IV ⊕m2∥0cI was made. In that case, the fact that the simulator has earlier access to the
construction queries in WS does not change the distribution of the answers from he point of
view of the adversary. Thus

Pr
[
DWI ⇒ 1 | ¬Bad

]
= Pr

[
DWS ⇒ 1 | ¬Bad

]
.
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Probability of Bad. We showed that WS and WI behave identically as long as no bad
event occurs. What remains is to bound the probability of the bad events, which we do in
Lemma 5.
Lemma 5. For X ∈ {S, I}, with the construction sponge-pi, we have

Pr
[
DWX sets Bad

]
≤ 7QP(QP − 1)

pcA
+ 7µQP

2pcI
+ 2QP

2

pb
+ (3rS ln(p) + 4) QP

pcS
.

For X ∈ {S, I}, with the construction sponge-pi$, we have

Pr
[
DWX sets Bad

]
≤

7QP(QP − 1)
pcA

+ 7QH(QH − 1)
2pcI

+ 22QPQH

pcI
+ 2QP

2

pb
+ (3rS ln(p) + 4) QP

pcS
.

Proof. The bad events are defined over the simulator table C, and Guess can only be set
in WS. Moreover, the simulator receives extra queries in WS, which only increases its success
probability to set Bad. We will thus evaluate the probability of Bad in WS. A “query”
here refers to a call to the simulator, regardless whether this comes from the adversary or
the construction. We have

PrWS [Bad] ≤
Q∑

i=1
Pr [Bad[i] | ¬Bad[i− 1]]

≤
Q∑

i=1
Pr [CollP[i] | ¬Bad[i− 1]] + Pr [ConnectP[i] | ¬Bad[i− 1]]

+ Pr [BadIV[i] | ¬Bad[i− 1]] + Pr [Guess[i] | ¬Bad[i− 1]] , (9)

where Bad[0] denotes an event that never holds. We will evaluate each probability
individually. First of all, it is important to note that as long as ¬Bad holds, the simulator
samples its answers uniformly at random, either with direct sampling, or samples the outer
part with RO calls, and the inner part by itself. In the latter case, the same RO entry is
never accessed for two different inputs.

Given i ∈ [Q], let iP denote the number of queries to SP or S−1
P made before the ith

query, and iH the number of queries to S$H made before the ith query. Moreover, let 1i
P

(resp., 1i
H ) denote the indicator function equal to 1 whenever the ith query is a query to

SP or S−1
P (resp., S$H).

CollP[i]. This bad event concerns collisions over cA field elements. For each old query
(X ′, Y ′), the bad event covers 7 different collision scenarios (noting that πd(x) = πd(x′)
and x = x′ are the same case). Therefore,

PrWS [CollP[i] | ¬Bad[i− 1]] ≤ 1i
P

7iP

pcA
. (10)

ConnectP[i]. Similarly, we have

PrWS [ConnectP[i] | ¬Bad[i− 1]] ≤ 1i
P

7iP

pcA
. (11)

BadIV[i] with sponge-pi. This bad event concerns colliding with one of the µ initial
values. For each of these values, there are at most 7 possible collision scenarios, over cI
field elements. Therefore,

PrWS [BadIV[i] | ¬Bad[i− 1]] = PrWS [ConnectIV[i] | ¬Bad[i− 1]] ≤ 1i
P

7µ

pcI
. (12)
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BadIV[i] with sponge-pi$. We have

Pr [CollH[i] | ¬Bad[i− 1]] ≤ 1i
H

7iH

pcI
.

ConnectPH[i] also concerns collisions on cI field elements. Assuming ¬Bad[i− 1], we
have two possibilities:

• The ith query is a hash query. There are at most 14iP values from CP to hit. The hash
answer is uniformly random, thus the query sets ConnectPH with a probability of
at most 1i

H
14iP

pcI ;

• The ith query is a query to SP or S−1
P . Then the uniformly random answer collides

with a prior hash output with probability of at most 1i
P

7iH

pcI .

Therefore:

PrWS [BadIV[i] | ¬Bad[i− 1]] ≤ 1i
H

7iH

pcI
+ 1i

H
14iP

pcI
+ 1i

P
7iH

pcI
. (13)

Guess[i]. Setting this event is similar to a guessing game: in order to win, the adversary
must be able to guess a node in a valid path without having constructed the path from left
to right with its primitive queries. First of all, with sponge-pi$, this case can occur if the
adversary makes a forward query with input X, where there exists (I, h, C) ∈ ĈH[i− 1],
but there exists no (I, h, id) ∈ ĈH[i − 1] such that rightcI

(X) = h. The simulator is a
random oracle, thus the values h are generated uniformly at random, and hidden from the
adversary as long as it does not make the queries. Therefore, we obtain a probability of at
most

1i
P

iH

pcI
.

The remaining cases consist of guessing nodes that were generated by queries to SP from
the construction sponge-pi or sponge-pi$. Thanks to the construction oracle, D has access
to the rS upper field elements of at most QP different nodes. Given u ∈ (Fp)rS , we define,
similarly to Choi et al. [CLL19], the random variable Fu as follows:

Fu :=
∣∣∣{(x, y, fwd, C) ∈ ĈP | leftrS (y) = u}

∣∣∣ ,

i.e., Fu is the number of construction queries which outer part hit u. The distribution
of the random variables (Fu)u is the same as the bin-and-balls experiment described in
Lemma 2. Now, given a query v∥w with v ∈ (Fp)rS and w ∈ (Fp)cS , the probability that
Guess[i] is set, conditioned on the query history of the i− 1 previous queries CP, is upper
bounded by

maxu∈(Fp)rS Fu

pcS
.

Therefore, by summing over all possible CP we obtain

PrWS [Guess[i] | ¬Bad[i− 1]] ≤
E
[
maxu∈(Fp)rS Fu

]
pcS

.

We can use Lemma 2, and obtain

E
[

max
a∈(Fp)rS

Fu

]
≤ 2QP

prS
+ 3rS ln(p) + 4 ,
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so that

PrWS [Guess[i] | ¬Bad[i− 1]]

≤


1i

P
2QP

pb
+ 1i

P
3rS ln(p) + 4

pcS
for sponge-pi ,

1i
P

2QP

pb
+ 1i

P
3rS ln(p) + 4

pcS
+ 1i

P
iH

pcI
for sponge-pi$ .

(14)

Conclusion. For sponge-pi, plugging (10) to (12) and (14) into (9) gives

PrWS [Bad] ≤ 7QP(QP − 1)
pcA

+ 7µQP

2pcI
+ 2QP

2

pb
+ (3rS ln(p) + 4) QP

pcS
.

For sponge-pi$, by plugging (10), (11), (13) and (14) into (9), we obtain

PrWS [Bad] ≤
7QP(QP − 1)

pcA
+ 7QH(QH − 1)

2pcI
+ 22QPQH

pcI
+ 2QP

2

pb
+ (3rS ln(p) + 4) QP

pcS
,

hence the lemma.

Conclusion. From Lemma 4, and using the fundamental lemma of game-playing [BR06],
∆D (WS ; WI) ≤ PrWS [Bad] . (15)

We can use Lemma 5 to upper bound this term. We plug the obtained bound into (6),
along with (8) into (7), and this concludes the theorem.

6.2 Proof of Theorem 3
Let D be any information-theoretic adversary that has access to either the real world, i.e.,
(fks-piP

Kid
)id∈[µ], or the ideal world, i.e., (ROid)id∈[µ]. For brevity, we denote the real world

as WR and the ideal world WI. D has access to resources as described in Section 2.3. Our
proof of Theorem 3 is inspired by that of [DM19], but differs due to the appearance of the
NCPs in our construction and the use of the H-Coefficient technique of Lemma 1.

Description of Transcripts. We focus first on the transcripts in WR. Note that queries are
of the form (idi, Mi, ni), where idi is the oracle index, Mi the message queried, and ni the
requested number of output elements. The response is a string Zi of length ni elements.

Note that fks-pi pads the message Mi to (M 1
i , . . . , M ℓ

i ), di ← padBlockb(Mi). The
evaluation of fks-pi, thus, in total, leads to ℓi + ⌈ni/r⌉ evaluations of P. For this ith

query, the state before the jth evaluation of P is denoted by sj
i and the state after the

evaluation by tj
i . We add those to the tuples, yielding a construction query transcript

τC =
{

(idi, Mi, ni, Zi,
(
si

j

)
j≥1,

(
ti
j

)
j≥1)

}q

i=1
,

where q is the total number of construction queries. Note that different queries may share a
common prefix, and this transcript may contain duplicate information. However, for good
transcripts (as we will define them later), these q tuples contain exactly QC input-output
tuples of P . In the ideal world WI, the values sj

i will be sampled uniformly at random with
replacement while maintaining consistency with RO for the values Zi, and the values ti will
be adapted based on the message input and the NCPs.

Finally, τP contains the query response pairs made to P:
τP = {(xi, yi)}QP

i=1 .

The joint transcript is τ = (τC , τP).
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Definition of Good and Bad Transcripts. For any s, t ∈ Fb
p, we say that s ≃ t, if:{

s, πp (s) , πf (s)
}
∩
{

t, πp (t) , πf (t)
}
̸= ϵ . (16)

Note that, trivially, we have:
t = s ⇐⇒ πp (t) = πp (s) ⇐⇒ πf (t) = πf (s) ,

which means that only 7 comparisons are needed to verify whether (16) holds.
Let T be the set of all attainable transcripts, i.e., all transcripts that occur with positive

probability. We define the following bad events:
• CollCC: ∃(idi, Mi, ni, Zi, (sj

i )j≥1, (tj
i )j≥1), (idi′ , Mi′ , ni′ , Zi′ , (sj

i′)j≥1, (tj
i′)j≥1) ∈ τC ,

j, j′ ∈ N such that (idi, M1
i , . . . , M j

i ) ̸= (idi′ , M1
i′ , . . . , M j′

i′ ) and(
(j, j′) ̸= (1, 1) and sj

i ≃ sj′

i′

)
or tj

i ≃ tj′

i′ ;

• CollC: ∃(idi, Mi, ni, Zi, (sj
i )j≥1, (tj

i )j≥1) ∈ τC , j ∈ N such that

j > 1 and
(

sj
i = πp

(
sj

i

)
or sj

i = πf
(

sj
i

))
;

• CollCP: ∃(idi, Mi, ni, Zi, (sj
i )j≥1, (tj

i )j≥1) ∈ τC , j ∈ N, (x, y) ∈ τP such that(
j ̸= 1 and sj

i ≃ x
)

or tj
i ≃ y ;

• CollCKey: ∃id ̸= id ′ ∈ [µ] such that
K[id ′]∥IV [id ′] = K[id]∥IV [id] ;

• CollPKey: ∃id ∈ [µ], (x, y) ∈ τP such that
K[id]∥IV [id] = x .

We define the event Bad as:
Bad = CollCC ∨CollC ∨CollCP ∨CollCKey ∨CollPKey ,

and we say that a transcript τ is called bad, i.e., τ ∈ Tbad , if it satisfies Bad. We partition
T into T = Tgood ⊔ Tbad .

Bounding the Ratio for Good Transcripts. Consider any τ ∈ Tgood and consider the
case where D is in WI. By definition, the intermediate states sj

i are generated uniformly at
random with replacement, and there are exactly QC − µ of them. Furthermore, there are
QP permutation queries and µ keys (for the initial states). Hence, we have:

Pr [DWI = τ ] = 1
(pb)QC−µ (pk)µ (pb)QP

. (17)

Now, consider the case where D is placed in WR. In this case the values sj
i are generated

uniformly at random without replacement using P, and there are exactly QC of them,
and they are all different from the QP tuples in τP . Thus, the whole transcript defines
QC + QP tuples for P. Furthermore, there are µ keys (for the initial states). Hence, we
have:

Pr [DWR = τ ] = 1
(pk)µ (pb)QC+QP

. (18)

Hence, from (17) and (18), we get Pr [DWR = τ ] ≥ Pr [DWI = τ ], or equivalently:
Pr [DWR = τ ]
Pr [DWI = τ ] ≥ 1 . (19)
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Bounding the Probability of Bad Transcripts in WI. Now, it remains to evaluate the
probability that a bad event occurs in WI. To ease our analysis we introduce the following
helper events:

• CollCP+: ∃(idi, Mi, ni, Zi, (sj
i )j≥1, (tj

i )j≥1) ∈ τC , (x, y) ∈ τP , j ∈ N such that

j ̸= 1 and sj
i ≃ x ;

• CollCP−: ∃(idi, Mi, ni, Zi, (sj
i )j≥1, (tj

i )j≥1) ∈ τC , (x, y) ∈ τP , j ∈ N such that

tj
i ≃ y .

Notice that these two events are sub-cases of CollCP. We introduce the following random
variables:

ColF = max
z∈Fr

p

#
{

x ∈ Fb
p | ∃(x, y) ∈ CP such that leftr (x) = z

}
,

ColB = max
z∈Fr

p

#
{

y ∈ Fb
p | ∃(x, y) ∈ CP such that leftr (y) = z

}
,

where CP is the table containing all the input-output pairs of P done during a construction
queries, i.e., the input output pairs that are unknown to D. We evaluate each case below.

• CollCC: There are at most 2
(

QC
2
)

pairs that can trigger this event, each of them
triggers this event with probability at most 7ξ/pb Hence, the probability of setting
this event is at most:

14ξ
(

QC
2
)

pb .

• CollC: There are at most QC values that can trigger this event, each of them triggers
this event with probability at most 2ξ/pb Hence, the probability of setting this event
is at most:

2ξQC

pb .

• CollCP: By the union bound we have:

Pr[CollCP] ≤ Pr
[
CollCP+]+ Pr

[
CollCP−] . (20)

We bound each term separately.

– CollCP+: Fix θF ∈ N, suppose that ColF = θF , and let x be as in the
definition of this event. Then, there can be at most θF construction queries
whose outer part is leftr (x), and each of these triggers this bad event with
probability at most 7/pc. Since there are QP possible values for x, we get:

Pr
[
CollCP+] =

∑
θ

Pr
[
CollCP+ | ColF = θF

]
Pr[ColF = θF ]

≤
∑

θ

7QPθF Pr[ColF = θF ]
pc = 7QP E[ColF ]

pc . (21)

– CollCP− Fix θB ∈ N and suppose that ColB = θB. Then we can repeat the
analysis on CollCP+ to conclude that:

Pr
[
CollCP+] = 7QP E[ColB ]

pc . (22)
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Hence, from (20) to (22) we get that CollCP happens with probability at most:

Pr[CollCP] = 7QP E[ColF + ColB ]
pc ;

• CollCKey: Clearly, the probability that two users with the same IV have their key
colliding is upper bounded by:

∑
s

us(us − 1)
pk+1 ;

• CollPKey: There are QP distinct primitive intput-output pairs and each of them
succeeds in triggering this event with probability at most umax/pk . Hence, the
probability of setting this event is at most:

QPumax

pk .

Grouping everything together, we get:

Pr [Bad] ≤
∑

s

us(us − 1)
pk+1 + QPumax

pk +
14ξ
(

QC
2
)

pb + 2ξQC

pb + 7QP E[ColF + ColB ]
pc .

(23)

In order to bound the expectations, we use Lemma 2, yielding:

E[ColF ] ≤ 2(QC − µ)
pr + 3r + 4 ≤ 2QC

pr + 3r + 4 , (24)

E[ColB ] ≤ 2(QC − µ)
pr + 3r + 4 ≤ 2QC

pr + 3r + 4 . (25)

Combining (23) to (25) we get:

Pr [Bad] ≤
∑

s

us(us − 1)
pk+1 + QPumax

pk +
14ξ
(

QC
2
)

pb + 2ξQC

pb

+ 28QCQP

pb + 14(6r + 8)QP

pc . (26)

We can simplify (26) by noticing that:

14ξ
(

QC
2
)

pb + 2ξQC

pb ≤ 9ξQC
2

pb . (27)

From (26) and (27), we get the desired result:

∆D (WR ; WS) ≤
∑

s

us(us − 1)
pk+1 + QPumax

pk + 9ξQC
2

pb + 28QCQP

pb + 14(6r + 8)QP

pc .

This concludes the proof. □
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Algorithm 8 Setup of the simulators S and S$ for duplex-pi and duplex-pi$
Function S.Initialize()

1: S.CP ← ϵ
2: S.G← ϵ
3: S.IV← {(IV id , id)}id∈[µ]

Function S.ValidIV()
1: S ← ϵ
2: for all (IV id, id) ∈ S.IV do
3: S ← S ∪ {(0rI ∥IV id , id)}
4: end for
5: return S

Function S$.Initialize ()
1: S$.CP ← ϵ
2: S.G← ϵ
3: S$.CH ← ϵ

Function S$.ValidIV()
1: S ← ϵ
2: for all (id, h) ∈ S$.CH do
3: S ← S ∪ {(0rI ∥h, id)}
4: end for
5: return S

6.3 Proofs of Theorems 4 and 5
Although it is not possible to reduce the security of duplex-pi and duplex-pi$ to the one
of sponge-pi and sponge-pi$, the underlying proofs share many similarities. The graphical
representation of the simulator’s query history slightly differs, as each duplex call squeezes
data. As a consequence, there are no absorbing paths, and no overlap between different
paths is possible unless a bad event occurs. Moreover, due to the presence of multiple
NCPs, the number of path types is multiplied by a factor of ζ. This will increase the
number collision combinations in the bad events, hence the quadratical factor of the form
ζ2 in the bounds. Another distinction is that, unlike in the sponge-pi and sponge-pi$
settings, the idealized object here is stateful. However, due to the way the distinguisher
resources are measured, we can resort to a step akin to Bertoni et al. [BDPV11a] to
serialize the ORO calls, and obtain direct access to the underlying RO at no cost.

Setup. The setup is defined very similarly as the one of Section 6.1, except that the
simulator maintains an additional structure named G that will be useful later. The setup
algorithms are specified in Algorithm 8, where S and S$ denote respectively the simulator
for duplex-pi and duplex-pi$.

Graph Notation. From its table C, the simulator derives a tree construction, similar to
the one in the proof of Theorems 1 and 2. However, this time every valid path corresponds
to a squeezing path, and the paths are overloaded with the domain separator indexes.
Given X, Y ∈ Fb

p, mp ∈ (Fp)≤rA−1, mf ∈ (Fp)rA , and i ∈ [ζ], we define two kinds of edges:

• X mf /i−−−→ Y denotes that (πf
i (X ⊕ (m∥0cA)) , Y , dir) ∈ CP;

• X mp/i−−−→ Y denotes that (πp
i (X ⊕ (m∥10∗)) , Y, dir) ∈ CP.

Similarly, given Y ∈ Fb
p, (IV , id) ∈ ValidIV(), mp ∈ (Fp)≤rI −1, and mf ∈ (Fp)rI , we

define two kinds of edges between a root node [id] and Y as follows:

• [id] mf /i−−−→ Y denotes that (πf
i (IV ⊕ (m∥0cI )) , Y , dir) ∈ CP;

• [id] mp/i−−−→ Y denotes that (πp
i (IV ⊕ (m∥10∗)) , Y, dir) ∈ CP.

The set of valid paths is the set of paths that correspond to intermediate states that
could be derived from a duplex-pi (or duplex-pi$) call. They are of the form

[id] m1/i1−−−−→ S2
m2/i2−−−−→ · · · mn/in−−−−→ Sn+1 .
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We will abbreviate those as [id] (m1,i1),(m2,i2),...,(mn,in)−−−−−−−−−−−−−−−−−→ Sn+1. Moreover, we define
Rooted(C) as the set of rooted nodes Z ∈ Fb

p, from which one can build a valid path
[id] P−→ Z.

Contrarily to the setting in Theorems 1 and 2, there cannot be an overlap between two
distinct paths as long as no bad event occurs. In other words, one cannot have [id1] P1−→ S

and [id2] P2−→ S where (id1, P1) ̸= (id2, P2).

Serializing the ORO and Simulator Definition. As we explained in Section 5.2, we
count the number of distinguisher queries without doubly counting repeating paths.
Thanks to this metric, the simulator can serialize the calls to the ORO with the func-
tion named Serialize() from Algorithm 9. This function takes as input a path P :=
(M1, i1), . . . , (Mℓ, iℓ), and if ℓ > 1, checks whether a RO call with input (M1, i1), . . . ,
(Mℓ−1, iℓ−1) has already been made (this is tracked explicitly thanks to the structure G),
and if yes, it returns RO(P, rS). In other words, this function allows to directly query
the stateless object RO, without any overhead. This makes the proof significantly easier,
and close to the one of Theorems 1 and 2 at no cost. The simulators for duplex-pi and
duplex-pi$ are described in detail in Algorithm 9.

World Splitting. We again introduce an intermediate world WS, where construction queries
give access to the duplex algorithm from Figure 4, but with the permutation P replaced
with the simulator S or S$, itself based on an instance of an ORO hidden from the adversary.
Moreover, primitive queries give also access to the same simulator. We have

Adviff
C,S(D) ≤ ∆D (WR ; WS) (28)

+ ∆D (WS ; WI) . (29)

As before, we have

∆D (WR ; WS) ≤
(

QP
2
)

pb
≤ QP

2

pb
. (30)

The remainder of the proof is dedicated to the analysis of (29).

Bad Events. The bad events are almost identical to the ones defined in the proof of
Theorems 1 and 2, with the difference that there are more NCPs. Let Q denote the
total number of queries made by the distinguisher, so that Q = QP for duplex-pi, and
Q = QP + QH for duplex-pi$. For i ∈ [Q], let CP[i] and CH[i] denote the state of
respectively CP and CH after the first i queries. The family of bad events is indexed by a
query index i ∈ [Q], and over the tables of the simulator.

• CollP[i]: ∃(X, Y, dir) ∈ CP[i]\CP[i−1], (X ′, Y ′, dir′) ∈ CP[i−1], and (i1, d1), (i2, d2) ∈
[ζ]× {p, f} such that

πd1
i1

(
rightcA

(Z)
)

= πd2
i2

(
rightcA

(Z ′)
)

,

where

(Z, Z ′) =
{

(Y, Y ′) if dir = fwd ,

(X, X ′) otherwise ;

• ConnectP[i]: ∃(X, Y, dir) ∈ CP[i] \ CP[i − 1], (X ′, Y ′, dir′) ∈ CP[i − 1], and
(i1, d1), (i2, d2) ∈ [ζ]× {p, f} such that

πd1
i1

(
rightcA

(Z)
)

= πd2
i2

(
rightcA

(
Z̄ ′)) ,
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Algorithm 9 Simulator interfaces for duplex-pi and duplex-pi$
Function S$H(id)

1: if ∃(id, h) ∈ S$.CH then
2: return h
3: end if
4: h

$←− FcI
p

5: S$.CH ← S$.CH ∪ {(id, h)}
6: return h

Function S−1
P (Y ) (same for S$−1

P )
1: if ∃(X, Y ) ∈ S.CP then
2: return Y
3: end if
4: X

$←− Fb
p

5: S.CP ← S.CP ∪ {(X, Y )}
6: return X

Function Serialize(id, P )
1: Parse P as (M1, i1), . . . , (Mℓ, iℓ)
2: if ℓ > 1 and (M1, i1), . . . , (Mℓ−1, iℓ−1) ̸∈ S.G then
3: return ⊥
4: end if
5: (Z1, u)← ORO.init(id, M1, i1)
6: for l = 2, . . . , ℓ do
7: Zl ← ORO.next(Ml, il)
8: end for
9: S.G← S.G.append((id, P ))

10: return Zℓ

Function SP(X) (same for S$P)
1: if ∃(X, Y ) ∈ S.CP then
2: return X
3: end if
4: Y

$←− Fb
p

// In the middle of a valid path with full absorption
5: if ∃ (IV , id) ∈ S.ValidIV(), S ∈ Fb

p, (id, P ) ∈ S.G, i ∈ [ζ], and m ∈ FrA
p such that

[id] P−→ S and X = πf
i (S ⊕m∥0cA) then

6: P ← P.append(m, i)
7: Yo ← Serialize (id, P )
8: Yi

$←− FcS
p

9: Y ← Yo ∥ Yi

// In the middle of a valid path with partial absorption
10: else if ∃ (IV , id) ∈ S.ValidIV(), S ∈ Fb

p, (id, P ) ∈ S.G, i ∈ [ζ], and m ∈ F≤rA−1
p such

that [id] P−→ S and X = πp
i (S ⊕m∥10∗) then

11: P ← P.append(m, i)
12: Yo ← Serialize (id, P )
13: Yi

$←− FcS
p

14: Y ← Yo ∥ Yi

// Start of squeezing phase from IV with one partial block
15: else if ∃ (IV , id) ∈ S.ValidIV(), i ∈ [ζ], and m ∈ F≤rI −1

p such that X =
πp

i (IV ⊕m∥10∗) then
16: Yo := Serialize (id, (m, i))
17: Yi

$←− FcS
p

18: Y ← Yo ∥ Yi

// Start of squeezing phase from IV with one full block
19: else if ∃ (IV , id) ∈ S.ValidIV(), i ∈ [ζ], and m ∈ FrI

p such that X = πf
i (IV ⊕m∥0cI )

then
20: Yo ← Serialize (id, (m, i))
21: Yi

$←− FcS
p

22: Y ← Yo ∥ Yi

23: end if
24: S.CP ← S.CP ∪ {(X, Y )}
25: return Y
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where

(Z, Z̄ ′) =
{

(Y, X ′) if dir = fwd ,

(X, Y ′) otherwise ;

• Guess[i]: ∃(X, Y, dir) ∈ CP[i] \CP[i − 1] such that Y ̸∈ RootedD(ĈP[i]), but Y ∈
Rooted(ĈP[i]);

• ConnectIV[i] (for duplex-pi only): ∃(X, Y, dir) ∈ CP[i], id ∈ [µ], and (i1, d1), (i2, d2) ∈
[ζ]× {p, f} such that

πd1
i1

(
rightcI

(Z)
)

= πd2
i2

(IV id) ,

where

Z =
{

X if dir = inv ,

Y otherwise ;

• CollH[i] (for duplex-pi$ only): ∃(id, h) ∈ CH[i] \CH[i− 1], (id ′, h′) ∈ CH[i− 1], and
(i1, d1), (i2, d2) ∈ [ζ]× {p, f} such that

πd1
i1

(h) = πd2
i2

(h′) ;

• ConnectPH[i] (for duplex-pi$ only):

– either ∃(X, Y, dir) ∈ CP[i] \CP[i− 1], (id, h) ∈ CH[i− 1], and (i1, d1), (i2, d2) ∈
[ζ]× {p, f} such that

πd1
i1

(h) = πd2
i2

(
rightcI

(Z)
)

,

where

Z =
{

X if dir = inv ,

Y otherwise ,

– or ∃(id, h) ∈ CH[i] \ CH[i − 1], (X, Y, dir) ∈ CP[i − 1] such that there exists
Z ∈ {X, Y } with

πd1
i1

(h) = πd2
i2

(
rightcI

(Z)
)

.

We define BadIV[i] as follows:

BadIV[i]
{

ConnectIV[i] for duplex-pi ,

CollH[i] ∨ConnectPH[i] for duplex-pi$ ,

and Bad[i] := CollP[i]∨ConnectP[i]∨BadIV[i]∨Guess[i]. Moreover, for any of those
bad events Event[i], let Event be

Q∨
i=1

Event[i] .
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WS versus WI, as Long as No Bad. The reasoning from Theorems 1 and 2 carries over as
we show in Lemmas 6 and 8.

Lemma 6. Let C be either the duplex-pi or duplex-pi$ construction, based on the
simulator S or S$, which is itself based on an ORO. For any (IV , id) ∈ ValidIV() and valid
path [id] P−→ Z derived from the simulator table, it holds that the output of the sequence of
calls C.init and C.next made with the path (id, P ) matches the output of the corresponding
sequence of calls ORO.init and ORO.next made with the path (id, P ).

Proof. Compared to sponge-pi/sponge-pi$ (Lemma 3), there is no distinction between
absorb and squeeze paths, since every valid path leads to squeezing values. This is
compensated by Constraint 4 (and Constraint 5 for duplex-pi), which enforces that no
two NCPs can coincide. Therefore, as long as no bad event occurs, there cannot be an
overlap between two different paths, and the reasoning from Lemma 3 carries over.

We finally argue that WI and WS are identically distributed as long as Bad does not
occur.

Lemma 7. We have

Pr
[
DWI ⇒ 1 | ¬Bad

]
= Pr

[
DWS ⇒ 1 | ¬Bad

]
Proof. Recall that the proof of Lemma 4 shows that this guarantee follows from ¬Guess
combined with the consistency of the answers established in Lemma 6. The same reasoning
extends directly to the current case.

Probability of Bad.

Lemma 8. For X ∈ {S, I}, with the construction duplex-pi, we have

Pr
[
DWX sets Bad

]
≤ (4ζ2 − 2ζ + 1)QP(QP − 1)

pcA
+ (4ζ2 − 2ζ + 1)µQP

2pcI

+ 2QP
2

pb
+ (3rS ln(p) + 4) QP

pcS
.

For X ∈ {S, I}, with the construction duplex-pi$, we have

Pr
[
DWX sets Bad

]
≤ (4ζ2 − 2ζ + 1)QP(QP − 1)

pcA
+ (4ζ2 − 2ζ + 1)QH(QH − 1)

2pcI

+ 3(4ζ2 − 2ζ + 1)QPQH

pcI
+ 2QP

2

pb
+ (3rS ln(p) + 4) QP

pcS
.

Proof. The proof is identical as that of Lemma 5, except that the number of collision cases
appearing in the bad events CollP,ConnectP, ConnectIV, CollH, ConnectPH grows
quadratically in the number of domain separators. In more detail, there are at most 4ζ2

different combinations of collisions of form πd1
i1

(X) = πd2
i2

(X ′). However, πd
i (X) = πd

i (X ′)
is equivalent to X = X ′, hence 2ζ − 1 duplicate cases can be removed from the count.

Conclusion. From Lemma 4, and using the fundamental lemma of game-playing [BR06],
we deduce that

∆D (WS ; WI) ≤ PrWS [Bad] .

This term can be upper bounded using Lemma 8. Further plugging (30) into (29) completes
the proofs of the theorems.
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7 Applications
Applications of sponge-pi and sponge-pi$. The sponge-pi variant is basically the
plain sponge construction, but with an application of a NCP on the inner part to account
for domain separation between full or partial data. This idea has appeared before in a
bit-oriented fashion. In particular, the ESCH hash function of the NIST lightweight cryp-
tography competition SPARKLE [BBC+19] can be seen as a special variant of sponge-pi:
it injectively pads the message only if its length is not a multiple of the rate. Then, right
before squeezing, it adds a constant to the full state, which differs depending on whether
the data was full or partial. As such, security of ESCH follows as an immediate corollary
of Theorem 1, but for p = 2, the 0-string as initial value, and either (b, c) = (384, 256) or
(b, c) = (512, 384) (ESCH operates with equal initial, absorbing, and squeezing rate).

Corollary 1. Let b, c ∈ N. Let QP ∈ N. Let C-b-c denote the construction underlying the
ESCH hash function based on a b-bit random permutation P, with c-bit capacity. There
exists a simulator S such that, for any distinguisher D making at most QP permutation
evaluations,

Adviff
C-b,S(D) ≤ 7QP

2

2c + 3QP
2

2b
+ (3(b − c) ln(2) + 4) QP

2c .

That said, as already mentioned in Section 1, the gains of our sponge-pi construction
over the sponge become more pronounced when considering larger fields, such as fields with
p ≈ 2256 as for Reinforced Concrete [GKL+22]. The sponge-pi$ variant gives additional
freedom over sponge-pi in that it allows to hash additional data into the initial inner part.
This can be useful if both bits and field elements have to be hashed, or if a random-looking
initialization value is needed for cross-protocol security, akin to SAFE [AKMQ23,KBM23].

Applications of fks-pi. The fks-pi construction can be seen to generalize the idea
of domain separation between plaintext absorption and tag generation in authenticated
encryption, as in Ascon-PRF [DEMS24], with the immediate avoidance of redundant
padding if the plaintext is of size a multiple of the rate. Not surprisingly, the bound is
comparable to that of Ascon-PRF [Men23], however, with subtle differences, namely that
in our case the initial values cannot be chosen freely and that we use a different approach
to tame multicollisions.

Applications of duplex-pi and duplex-pi$. The duplex variants duplex-pi and duplex-pi$
significantly generalize these applications. That said, these constructions are described for
a general amount of 2ζ NCPs, but the actual amount needed highly depends on the actual
use case of the duplex. For example, one can describe sponge-pi (Algorithm 2) when πp

has no fixed points in terms of duplex-pi, as we demonstrate in Algorithm 10. In this
case, the duplex-pi is always called with second input 1 for a full data block, and with
second input 2 for either full or partial data block, which means that it invokes 3 NCPs at
most. A comparable reduction from duplex-pi$ to sponge-pi$ applies.

One can also describe a SpongeWrap [BDPV11a] style authenticated encryption scheme.
At a high level, in authenticated encryption, we get as input a key K ∈ Fκ

p , nonce N ∈ Fν
p ,

associated data A ∈ F∗
p, and plaintext M ∈ F∗

p, which get turned into a ciphertext C ∈ F|M |
p

and tag T ∈ Fτ
p . Such a function can be naively2 implemented using duplex-pi, as we

demonstrate in Algorithm 11. The decryption functionality goes the straightforward
way, with the main difference that ciphertexts are now overwritten into the state, which
is addressed by our indifferentiability proof. In this case, one requires 2ζ = 4 NCPs.

2More clever implementations may exist, for instance ones that make use of the freedom one has in the
index id for the initial value.
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Algorithm 10 sponge-pi using duplex-pi
Function sponge-pi
Input: (id, M , n) ∈ [µ]× F∗

p × N+
Output: Z ∈ F∗

p

1: (M1, . . . , Mℓ)← padrI ,rA
(M )

2: if ℓ = 0 then
3: Z ← duplex-pi.init(ϵ, 2)
4: else if ℓ = 1 then
5: Z ← duplex-pi.init(M1, 2)
6: else
7: duplex-pi.init(IV , M1, 1) // discard output
8: for 2 ≤ i ≤ ℓ− 1 do
9: duplex-pi.next(Mi , 1) // discard output

10: end for
11: Z ← duplex-pi.next(Mℓ, 2)
12: end if
13: for 2 ≤ i ≤ ⌈n

r ⌉ do
14: Z ← Z∥duplex-pi.next(0rA , 1)
15: end for
16: return Z [1 : n]

Security of the function immediately follows from the indifferentiability of the duplex-pi
construction. The SpongeWrap-pi scheme can also be generalized to the SCHWAEMM
authenticated encryption scheme of above-mentioned SPARKLE submission [BBC+19],
noting that it (just like ESCH) adds a constant to the inner part to separate between full and
partial data. (We note that SCHWAEMM absorbs data in a Beetle-style fashion [CDNY18]
but this is captured by our analysis because we basically prove blockwise adaptive security.)

Again, the true power of duplex-pi and duplex-pi$ becomes only more apparent if
arbitrary fields are considered. Even beyond that, the flexibility of these duplexes allows
them to be applicable in many more protocols. To be more precise, as these functionalities
extend the power of the SAFE API [AKMQ23,KBM23] in the sense that no input-output
pattern encoding has to be hashed prior to the evaluation, all applications that SAFE API
has (commitment schemes, multi-round interactive protocols, Fiat-Shamir, etc.) would
fare well with duplex-pi and duplex-pi$, too.

8 Conclusion
In this work, we introduced arithmetization-oriented permutation-based sponges and
duplexes, and a full keyed sponge, all with length-preserving padding using NCPs, without
sacrificing security. In a bit more detail, in a bit-oriented setting, the security degradation
is similar to padding into the inner part of the state (basically reducing the capacity by 1),
but the gains of our constructions become more pronounced when they are used on large
finite fields. In this case, depending on the size of the field, and the choice of permutation
size, capacity, and rate, the existing security proofs may be void but our bounds still yield
good security.

We also demonstrated the potential of our duplex-pi, as it can be used to describe
plain hashing (notably, sponge-pi) as well as authenticated encryption (SpongeWrap-pi).
It can also be used in many other applications such as interactive protocols. That said, we
wish to stress that the resulting bounds will always be birthday bound in the inner part.
This is because we proved duplex-pi and duplex-pi$ in the indifferentiability framework
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Algorithm 11 SpongeWrap-pi
Function SpongeWrap-pi
Input: (K, N, A, M) ∈ Fκ

p × Fν
p × F∗

p × F∗
p

Output: (C, T ) ∈ F|M |
p × Fτ

p

1: B ← K∥N∥A
2: (B1, . . . , Bℓ)← padrI ,rA

(B)
3: if ℓ = 1 then
4: Z ← duplex-pi.init(B1, 2)
5: else
6: duplex-pi.init(IV , B1, 1) // discard output
7: for 2 ≤ i ≤ ℓ− 1 do
8: duplex-pi.next(Bi , 1) // discard output
9: end for

10: Z ← duplex-pi.next(Bℓ, 2)
11: end if
12: (M1, . . . , Mℓ),← padrA

(M)
13: if ℓ = 0 then
14: Z ← Z∥duplex-pi.next(ϵ, 2)
15: else
16: for 1 ≤ i ≤ ℓ− 1 do
17: Z ← Z∥duplex-pi.next(Mi , 1)
18: end for
19: Z ← Z∥duplex-pi.next(Mℓ, 2)
20: end if
21: for 2 ≤ i ≤ ⌈τ/rA⌉ do
22: Z ← Z∥duplex-pi.next(0rA , 1)
23: end for
24: return Z[1 : |M |+ τ ]⊕ (M∥0τ )

(as in the original analysis [BDPV11a] and that of Degabriele et al. [DFG23]). It has been
observed before that a keyed version of the duplex typically yields better security as the
offline and online complexity can be separated [ADMV15,MRV15,DMV17] (similar to how
Theorem 3 achieves a better bound than Theorem 1). However, integrating the technique
of using NCPs into keyed duplexes seems to require a non-trivial analysis.
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