
IACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 2025, No. 1, pp. 211–239. DOI:10.46586/tosc.v2025.i1.211-239

Revisiting Leakage-Resilient MACs and
Succinctly-Committing AEAD

More Applications of Pseudo-Random Injections

Mustafa Khairallah1,2

1 Dept. of Electrical and Information Technology, Lund University, Lund, Sweden
2 Nanyang Technological University, Singapore, Singapore

mustafa.khairallah.1608(at)eit.lth.se

Abstract. Pseudo-Random Injections (PRIs) have been used in several applications in
symmetric-key cryptography, such as in the idealization of Authenticated Encryption
with Associated Data (AEAD) schemes, building robust AEAD, and, recently, in
converting a committing AEAD scheme into a succinctly committing AEAD scheme.
In Crypto 2024, Bellare and Hoang showed that if an AEAD scheme is already
committing, it can be transformed into a succinctly committing scheme by encrypting
part of the plaintext using a PRI. In this paper, we revisit the applications of PRIs
in building Message Authentication Codes (MACs) and AEAD schemes. First, we
look at some of the properties and definitions of PRIs, such as collision resistance
and unforgeability when used as a MAC with a small plaintext space, under different
leakage models. Next, we show how they can be combined with collision-resistant
hash functions to build a MAC for long plaintexts, offering flexible security depending
on how the PRI and equality check are implemented. If both the PRI and equality
check are leak-free, the MAC provides almost optimal security, but the security only
degrades a little if the equality check is only leakage-resilient (rather than leak-free).
If the equality check has unbounded leakage, the security drops to a baseline security
rather than being completely insecure. Next, we show how to use PRIs to build
a succinctly committing online AEAD scheme from scratch, dubbed as scoAE. It
achieves succinct CMT4 security, privacy, and Ciphertext Integrity with Misuse and
Leakage (CIML2) security. Last but not least, we show how to build a succinctly
committing nonce Misuse-Resistant (MRAE) AEAD scheme, dubbed as scMRAE.
The construction combines the SIV paradigm with PRI-based encryption (e.g., the
Encode-then-Encipher (EtE) framework).
Keywords: Context Commitment · Succinct · AEAD · MAC · Leakage Resilience

1 Introduction
Authenticated Encryption with Associated Data (AEAD) has become the defacto symmetric-
key encryption notion, as it provides both confidentiality and authenticity, simultaneously.
As AEAD has become widespread, new threats have emerged, such as nonce repeti-
tion [RS06], leakage-based attacks [BBC+20] and attacks on context commitment [ADG+22].
Recently, the relation between leakage-resilient AEAD and context-committing AEAD has
become a topic of study. Struck and Weishäupl [SW24] studied the context commitment
of generic AEAD constructions and how it relates to the construction of leakage-resilient
AEAD. Later, Dhar et al. [DEJ+24] studied the context commitment of prominent leakage-
resilient schemes, showing that several of these schemes are already context-committing
with security up to half the tag size.

Licensed under Creative Commons License CC-BY 4.0.
Received: 2024-09-01 Revised: 2024-11-22 Accepted: 2025-01-23 Published: 2025-03-07

https://doi.org/10.46586/tosc.v2025.i1.211-239
mailto:mustafa.khairallah.1608(at)eit.lth.se
http://creativecommons.org/licenses/by/4.0/

212 Revisiting Leakage-Resilient MACs and Succinctly-Committing AEAD

When it comes to leakage resilience, we are interested in the paradigm of leakage-
resilient designs explored in [BBC+20], using what is known as leveled implementations.
This approach is similar to [DEJ+24]. In this paradigm, a small part of the scheme is
typically assumed to have leakage-resilient properties, arising from heavy side-channel
countermeasures. The rest of the scheme is considered to have unbounded leakage. The
authors of [BBC+20] categorized AEAD schemes into 4 grades based on this paradigm, and
we are interested in the grades 2 and 3. In these grades, the scheme is typically expected to
have heavily-protected initialization and finalization functions, while the middle section of
the scheme can leak all its internal variables. These schemes have a significant advantage
when it comes to protecting against side-channel attacks, since having only two protected
fixed-length functions is a lot cheaper than protecting the whole scheme. It was also shown
in [DEJ+24] that due to the inherent partial collision resistance of these schemes, it can
be shown that several of them offer context commitment. However, what assumption one
makes about the heavily protected function affects the security one can expect from the
scheme as well as its countermeasure cost, which depends on how realistic and verifiable
the assumption is. We summarize the typical assumptions in Section 2, while Section 3 can
be seen as a case study in the impact of these assumptions on the same scheme. We note
that there are other paradigms for leakage resilience, such as the ISAP [DEM+17] AEAD
scheme which uses lightly protected cryptographic permutations in a restricted manner to
achieve leakage resilience. It also comes with provable security analysis in the presence of
leakage [DM19, DM21], as well as committing security analysis [KSW23, DEJ+24].

In Crypto 2024 [BH24], Bellare and Hoang studied an issue that arises in context-
committing schemes, especially tag-based AEAD schemes. These schemes offer context
commitment security only up to half their tag sizes (alternatively known as ciphertext
expansion). They defined a succinctly committing AEAD scheme as a context-committing
AEAD scheme with security higher than half the ciphertext expansion. They proposed
a transformation from a context-committing AEAD scheme to a succinctly committing
AEAD scheme. If the underlying AEAD scheme is tag-based but not context-committing,
we can use another transformation to make it context-committing before applying this
transformation.

In order to explain their solution and related solutions, we recall what a tag-based
scheme is. From a high-level perspective, a tag-based AEAD scheme encrypts each message
into a variable-length ciphertext and a fixed-length tag. During decryption, the ciphertext
is used to derive a plaintext and a fixed-length tag, which is compared to the tag provided
by the user, and the plaintext is released if and only if the tags match. Thus, such schemes
cannot offer committing security beyond half the tag size as the adversary can simply
attempt to find tag collisions. Consequently, the output of a succinctly committing AEAD
scheme cannot be separated into tags and ciphertexts. What Bellare and Hoang [BH24]
propose is to divide the plaintext M into two parts: M ′ and M⋆, where only the former is
encrypted using a tag-based context-committing scheme, and the tag is used as a key to
encrypt the latter using a Pseudo-Random Injection (PRI) (which they call an invertible
pseudo-random function). While this approach improves context commitment significantly,
it requires an underlying AEAD scheme that is already committing. If the scheme is not
already committing, we have to apply two transformations, each with its own overhead.

One may consider using a wide block cipher in the Encode-then-Encipher (EtE)
framework [HKR15]. This resolves the issue of collision-finding attacks on the tag, as there
is no distinct tag, but the whole ciphertext is needed for authenticity. However, it has been
shown that most practical realizations of this strategy do not offer high commitment as one
would expect from an ideal wide block cipher [CFGI+23]. Recently, Naito et al. [NSS24]
proposed an EtE-based AEAD scheme that is succinctly committing. Their solution
assumes the existence of a non-committing wide block cipher, and applies a transformation
inspired by that of [BH24] on top of it. While this solution does not assume an already

Mustafa Khairallah 213

committing scheme, it targets higher security than what we expect from a standard AEAD
scheme, and uses a wide block cipher which is typically an expensive primitive compared
to AEAD.

Contributions: The goal of this work is to explore the applications of PRIs in building
more flexible and more efficient symmetric key algorithms. First, we explore some of the
properties of PRIs. We show that an ideal PRI is collision resistant with a similar bound
to that given by Bellare and Hoang [BH24] for a PRI built from an ideal Tweakable Block
Cipher (TBC) using EtE. We also study their strong unforgeability with leakage as MACs
under different assumptions: leak-free, unpredictable with leakage and/or leakage-resilient
value comparison [DM21] implementations.

Next, we study the application of PRIs in building a collision-resistant, leakage-resilient
MAC that has the flexibility of providing security vs. efficient trade-offs. We observe that
LRMAC1, proposed by Berti et al. can be interpreted as being based on a PRI where
the plaintext space of the PRI is limited to only the all-zero vector. On the other hand,
the collision resistance of LRMAC1 was studied in [DEJ+24]. We propose iLRMAC1, a
generalization of LRMAC1 where the TBC is replaced with a general PRI. We show that
it inherits the collision resistance of the PRI and the hash function used. We also study
its strong Unforgeability with decryption Leakage (sUF-L2). In LRMAC1, the inverse
PRI can either return 0n or ⊥. In our case, the inverse PRI can return multiple values,
and we need to compare these values with a value given by the user. We can reduce the
unforgeability with leakage of the full MAC to that of the underlying PRI. As a side note,
we demonstrate an error in the original interpretation of the bounds given in [BGPS21],
where the authors claimed to achieve beyond birthday bound security, but their main
theorem did not support such claim.

Next, we propose two new AEAD schemes. The first scheme is dubbed succinctly
committing online AEAD (scoAE). It is an idealization of a wide class of online AEAD
schemes, where the nonce, associated data and most of the plaintext are absorbed by a
keyed encryption function. This encryption function also generates an auxiliary output
which is collision resistant: for the same key, it is hard to find two sets of inputs where
the auxiliary output is the same. The auxiliary output is used as a tweak for a keyed
PRI that encrypts the last m bits of the plaintext. The output of the PRI is both a tag
and a ciphertext of the last m bits of the plaintext. This approach improves on [BH24]
in two regards: this AEAD construction is both online (if the encryption function is
online) and does not require a transformation, avoiding the nested assumptions used
in [BH24]. Besides, as the hashed auxiliary output of the encryption function is only used
as a tweak, and not as a key, we can instantiate the scheme without any randomness
assumptions on the auxiliary output. We show that such construction is CIML2-secure
under reasonable leakage assumptions: heavily-protected PRI, and the encryption function
is split into a heavily-protected key derivation function and a collision-resistant function
with unbounded leakage. This shows that a duplex sponge construction or an encrypt-
then-MAC construction can be easily converted into being succinctly committing with
minimal modifications.

The second AEAD scheme we propose is dubbed succinctly committing Misuse-Resistant
AEAD (scMRAE). It is a nonce-misuse-resistant scheme based on similar techniques but
with a two-pass MAC-then-Encrypt structure, where the MAC is similar to iLRMAC, with
one less check, and can achieve Misuse-Resistant AEAD (MRAE) security and CMT4
security. The idea is to mix both that EtE approach and the Synthetic IV (SIV) approach.
We divide the plaintext M into (M ′, M⋆) where M⋆ is the last m-bit string of M . By
using an iLRMAC-like structure for the MAC layer, the tag becomes an EtE-like encryption
of M⋆. Then, the tag is used as an Initial Vector (IV) for a stream cipher that encrypts

1the i stands for "injective".

214 Revisiting Leakage-Resilient MACs and Succinctly-Committing AEAD

M ′ into C ′. During decryption, first, we recover M ′ from C ′ and the tag. Then, we verify
that for any M⋆, the tag is valid; this process also returns the valid M⋆, if any. If there
is no such M⋆, the ciphertext is deemed invalid. It is easy to follow that this scheme
works in a similar way to SIV, where any change in any of the inputs N , A or M affects
the tag and the ciphertext, ensuring privacy with nonce-misuse. The integrity (with and
without leakage) is similar to the unforgeability of iLRMAC without value comparison:
we just require that the tag corresponds to any valid PRI point. Similarly, the context
commitment reduces to the collision resistance of iLRMAC.

We emphasize that succinct commitment is different from the concept of compact
commitment introduced in [GLR17], which refers to a scheme where only a constant
size part of the ciphertext needs to be checked to verify commitment. A scheme can
be succinctly committing but not compactly committing, and vice versa. Our schemes,
as well as the transformation of [BH24], are both succinctly committing and compactly
committing.

2 Preliminaries
General Notation: For a set X , we write X

$←− X to denote that a value X is sampled
uniformly at random from X . {0, 1}∗ is the set of all bit strings, including the empty string
ϵ. {0, 1}b is the set of bit strings of length b and {0, 1}≤b is the set of bit strings of length at
most b, including the empty string. For an integer m > 0, we say (M⋆, M ′)← parse(M),
such that M⋆ = M and M ′ = ϵ if M ∈ {0, 1}≤m, and M ′∥M⋆ = M such that |M⋆| = m,
otherwise. An adversary A is a computationally bounded algorithm that plays a security
game against a challenger. We indicate that A outputs X by X ← A. We say |X| to
represent the bit length of the bit string X. We say |X | to represent the number of elements
in the set X . If x′ is a linear function of x, we say x′ = lin(x). [1 . . . n] refers to the set of
integers from 1 to n, both inclusive.

Collision Resistance of Hash Functions: Let H : Kh ×M→ X be a hash function. A
hash function H is called (εcr, t)-collision-resistant if for every t-bounded adversary A (i.e.
running in time at most t), the probability that A(s) outputs a pair of distinct inputs
(M1, M2) ∈ M2, such that Hs(M1) = Hs(M2) and M1 ≠ M2, is bounded by εcr, with
s

$←− Kh picked uniformly at random:

Pr[s $←− Kh, (M1, M2)← A(s) s.t. M1 ̸= M2, Hs(M1) = Hs(M2)] ≤ εcr.

The following notions and constructions use a collision-resistant hash function as a
building block. Its key is shared with the adversary at the beginning of the game, and
is included in the syntax definition of respective constructions. This explains why some
definitions include two key domains: Kh as the domain of the hash key, and K as the
domain of the secret key. In collision games, the secret key is treated as part of the chosen
input.

Collision-Resistant Encryption: Let E : Kh×K×N ×A×M→ C×V be an encryption
function with auxiliary output. An encryption function with auxiliary output E is
called (εcr, t)-collision-resistant if for every t-bounded adversary A (i.e. running in time
at most t), the probability that A(s) outputs a key K and a pair of distinct input
tuples (N1, A1, M1), (N2, A2, M2) ∈ (N × A × M)2, such that V1 = V2, (C1, V1) ←
Es(K, N1, A1, M1) and (C1, V1) ← Es(K, N2, A2, M2), is bounded by εcr, with s

$←− Kh

picked uniformly at random:

Pr[s $←− Kh, (K, N1, A1, M1, N2, A2, M2)← A(s) s.t. (N1, A1, M1) ̸= (N2, A2, M2),

Mustafa Khairallah 215

Es(K, N1, A1, M1) = (C1, V1), Es(K, N2, A2, M2) = (C2, V2), V1 = V2] ≤ εcr.

We drop the suffix s when clear from the context. We shall also call an encryption function
with auxiliary output E as (εcr, t)-strongly-collision-resistant if for any t-bounded adversary
A

Pr[s $←− Kh, (K1, N1, A1, M1, K2, N2, A2, M2)← A(s)

s.t. (K1, N1, A1, M1) ̸= (K2, N2, A2, M2),

Es(K1, N1, A1, M1) = (C1, V1), Es(K2, N2, A2, M2) = (C2, V2), V1 = V2] ≤ εcr.

In other words, strong collision resistance allows the adversary to choose different keys,
while weak collision resistance requires that one key is used in both colliding inputs.

Message Authentication Codes (MACs): Let Mac : Kh × K ×M → T be a function
that takes as input a hash key s ∈ Kh, a secret key K ∈ K and message M ∈ M and
returns a tag T ∈ T . Ver : Kh × K ×M× T → {true, false} takes the keys, message
and a tag T ∈ T , and returns either true or false.

Correctness: Ver(s, K, M, T) returns true if and only if Mac(s, K, M) = T . We drop
the hash key when it is clear from context.

strong Unforgeability with verification Leakage (sUF-L2): We follow the formaliza-
tion of Berti et al. [BGPS21]. Let LM be the leakage function corresponding to running
Mac with secret key K and LV be the leakage function corresponding to running Ver
with secret key K. We say that Mac is (ε, qL, qm, qv, t)-sUF-L2-secure against adaptive
adversaries if for all adversaries that are bounded by time t and make qL profiling queries
to either LM or LV with chosen key, qm queries to Mac and qv queries to Ver, and do not
make trivial queries:

Pr[s $←− Kh, K
$←− K : (M, T)← ALM ,LV ,Mac,Ver(s)|Ver(M, T) = true] ≤ ε.

Collision Resistance of MACs: We say Mac is (εcr, t)-collision-resistant if for ev-
ery t-bounded adversary A, the probability that A(s) outputs a pair of distinct in-
puts ((K1, M1), (K2, M2)) ∈ (K × M)2, such that Mac(K1, M1) = Mac(K2, M2) and
(K1, M1) ̸= (K2, M2), is bounded by εcr, with s

$←− Kh picked uniformly at random:

Pr[s $←− Kh, ((K1, M1), (K2, M2))← A(s) ∈ (K ×M)2

s.t. (K1, M1) ̸= (K2, M2), Mac(K1, M1) = Mac(K2, M2)] ≤ εcr.

Authenticated Encryption with Associated Data (AEAD): An AEAD scheme is a pair
of functions Π = (E, D). E : K×N ×A× {0, 1}∗ → {0, 1}∗ is the encryption function that
takes secret key K ∈ K, nonce N ∈ N , associated data A ∈ A and plaintext M ∈ {0, 1}∗
and returns ciphertext C ∈ {0, 1}∗. D : K × N × A × {0, 1}∗ → {0, 1}∗ ∪ {⊥} is the
decryption function that takes secret key K ∈ K, nonce N ∈ N , associated data A ∈ A
and ciphertext C ∈ {0, 1}∗ and returns plaintext M ∈ {0, 1}∗ or the symbol ⊥.

Ciphertext Expansion: Let E(K, N, A, M) = C, then l = |C| − |M | > 0 is known as
the ciphertext expansion.

216 Revisiting Leakage-Resilient MACs and Succinctly-Committing AEAD

Correctness and Tidiness: If the scheme satisfies that

D(K, N, A, E(K, N, A, M)) = M

for all inputs, we say the scheme is correct. If the scheme satisfies that

E(K, N, A, D(K, N, A, C)) = C

for all inputs such that D(K, N, A, C) ̸=⊥, we say the scheme is tidy.

Confidentiality: Let A be an adversary that makes q queries to E with secret key
K, then outputs either 0 or 1. We say the ciphertexts are indistinguishable from random
strings against chosen plaintext adversaries if the following advantage is negligible. We
define the advantage of A as

Advind−cpa
Π (A) def= |Pr[K $←− K : 1← AE]− Pr[1← A$]|,

where $ returns a uniformly random string of the correct ciphertext length for every query,
assuming A does not repeat queries. We refer to [BBC+20] for a detailed discussions
of generalizations of this security notion to include different types of leakage and nonce
handling. We note that if the scheme is secure against nonce repeating adversaries, we
say the scheme achieves misuse-resistant confidentiality. We will only deal with black-box
confidentiality, i.e., without any leakage.

Ciphertext Integrity with nonce Misuse and Leakage (CIML2): Let B be an ad-
versary that makes qe queries to E with an associated leakage function Le and qd queries
to D with an associated leakage function Ld. B does not make trivial queries but can
repeat nonces in both encryption and decryption queries. We say Π is CIML2-secure if the
probability that B forges Π, i.e., any decryption query returns a value other than ⊥, is
negligible:

Advciml2
Π (B) def= |Pr[K $←− K : BE,D,Le,Ld forges Π]|

If a scheme achieves both confidentiality and integrity against nonce-repeating adver-
saries, we say the scheme is MRAE secure. If the scheme achieves this notion without
leakage, we shall refer to it as Integrity of Ciphertext (int− ctxt).

CMT4 Security: Bellare and Hoang [BH22] studied the relations between different
context commitment security notions and showed that CMT4 is the strongest notions for
correct and tidy schemes, and we shall focus on it. In the CMT4 game against an AEAD
scheme Π, an adversary C outputs (K1, N1, A1, M1) and (K2, N2, A2, M2); C wins if:

• (K1, N1, A1, M1) ̸= (K2, N2, A2, M2);

• E(K1, N1, A1, M1) = E(K2, N2, A2, M2).
We write εCMT4 to denote the upper bound on the probability that any such adversary
wins. The adversary has access to the ideal primitives and hash keys used by Π.

Leakage functions: Throughout the paper, we refer to the leakage function of different
primitives, and different leakage models. These models can be summarized by three
concepts:

• Leak-free functions: a function or a primitive is leak-free if an adversary/observer
cannot learn anything about its execution except what they can infer from its inputs
and outputs defined in its syntax and revealed by the oracle. In other words, if
the oracle executes a leak-free function and the inputs and/or outputs are only
used internally by the oracle, then the adversary learns nothing about the function
execution, except what they can infer from the interaction with the oracle.

Mustafa Khairallah 217

• Leakage-resilient functions: a function or a primitive is leakage-resilient if its execution
leaks some information that is not inferred from the oracle interaction, but is assumed
to still be secure despite the leaked information. The leaked information can be
defined by an associated leakage function if needed. Leakage resilience of a primitive
is typically an assumption: we assume that a TBC is still unpredictable even with
leakage, or we assume that a value comparison function is still secure with leakage.
In this case, the security is captured by a notion that embodies this assumption. For
larger constructions, we need a security proof that reduces the security to smaller
primitive that are themselves either leak-free, leakage-resilient or have unbounded
leakage. For instance, we can assume that a block cipher has a non-trivial leakage
functions. This makes it harder to assume it is indistinguishable from a random
permutation, but it maintains a security property such as unpredictability and/or
resistance against key recovery despite the leakage.

• Functions with unbounded leakage: These functions are assumed to leak all their
internal values, execution flow, etc. Formally, some functions appear in the security
proof as monolithic functions where the internals are not specified, but saying a
function has unbounded leakage means that we make no assumptions at all about
what the adversary can learn when the function is executed. Note that this also
means that even if the function’s inputs and outputs are hidden inside the oracle,
the adversary is assumed to learn them if the function has unbounded leakage.

We refer to [BBC+20] for a more in-depth discussion on the different levels and types of
leakage assumptions in this context.

3 Pseudo-Random Injections
As cryptographic primitives, PRIs are not as widely used as other cryptographic primitives
such as Pseudo-Random Functions (PRFs) or Pseudo-Random Permutations (PRPs).
However, they have seen applications in idealizing AEAD [RS06, Kha24] and the design
of robust AEAD schemes [FLPQ13, BF18]. In Crypto 2024, Bellare and Hoang [BH24]
used a restricted version of a PRI as part of a transfromation of a tag-based committing
AEAD scheme to a succinctly committing AEAD scheme. In the rest of this paper, we
shall use PRIs to construct a collision-resistant MAC and adhoc succinctly committing
AEAD schemes, i.e., succinctly committing AEAD schemes that are not based on an
underlying tag-based AEAD scheme. In this section, we establish some of the definitions
and properties needed.

Definition 1. A keyed tweakable injective function f : {0, 1}k × {0, 1}w ×M→ C is a
function with key space {0, 1}k, tweak space {0, 1}w, plaintext space M and ciphertext
space C, such that |M| ≤ |C|. For any (K, W) ∈ {0, 1}k×{0, 1}w, f(K, W, ·) is an injective
function from M to C. f−1 : {0, 1}k × {0, 1}w × C → {⊥} ∪ M is its inverse, such
that f−1(K, W, C) = M if and only if f(K, W, M) = C. f−1(K, W, C) =⊥ if ∀M ∈ M,
f(K, W, M) ̸= C. If M = C, then f is a Tweakable Block Cipher (TBC).

Definition 2. An function f : {0, 1}k ×{0, 1}w ×M→ C is called a (εpri, t)-secure PRI if,
for any distinguishing adversary A that runs in time at most t,

|Pr[π̃ $←− Fw,M,C : 1← Aπ̃,π̃−1
]− Pr[K $←− {0, 1}k : 1← Af(K,·,·),f−1(K,·,·)]| ≤ εpri,

where Fw,M,C is the set of all tweakable injections from {0, 1}w ×M to C.

If the PRI is replaced by a TBC, we shall refer to the security bound as εstprp.

218 Revisiting Leakage-Resilient MACs and Succinctly-Committing AEAD

Definition 3. An ideal PRI f : {0, 1}k × {0, 1}w ×M→ C is a family of keyed tweakable
injections indexed by K ∈ {0, 1}k, sampled uniformly randomly from the set of all
possible families of keyed tweakable injections with the same parameters. In other words,
∀K ∈ {0, 1}k, f(K, ·, ·) is sampled uniformly at random from Fh,M,C. If M = C, then f
is an ideal TBC. Such PRI constructed using lazy sampling is depicted in Algorithm 1,
where M = {0, 1}≤m and C = {0, 1}n.

Algorithm 1 An ideal PRI implemented using lazy sampling.
1: for (K, W) ∈ {0, 1}k × {0, 1}w do
2: Dom(K, W)← ϕ
3: Img(K, W)← ϕ
4: Invalid(K, W)← ϕ
5: end for

6: f(K, W, M):

7: C
$←− {0, 1}n \ (Img(K, W) ∪ Invalid(K, W))

8: Img(K, W)← Img(K, W) ∪ {C}
9: Dom(K, W)← Dom(K, W) ∪ {M}

10: return C

11: f−1(K, W, C):
12: EligY ← {0, 1}n \ (Img(K, W) ∪ Invalid(K, W))
13: EligX← {0, 1}≤m \ Dom(K, W)

14: x
$←− [1 . . . |EligY|]

15: if x > |EligX| then
16: Invalid(K, W)← Invalid(K, W) ∪ {C}
17: return ⊥
18: else
19: X

$←− {0, 1}≤m \ Dom(K, W)
20: Img(K, W)← Img(K, W) ∪ {C}
21: Dom(K, W)← Dom(K, W) ∪ {X}
22: return X
23: end if

3.1 Collision Resistance
Proposition 1. Let f : {0, 1}k × {0, 1}w × {0, 1}≤m → {0, 1}n be an ideal PRI. Then, f
is (εcr, t)-collision-resistant such that

εcr ≤
q2

e + 2
2n

+ 4qd

2n−m

where any adversary makes at most qe queries to f and qd queries to f−1, and t =
O(tqe

+ tqd
), tqe

is the time needed to make qe queries to f and tqd
is the time needed to

make qd queries to f−1. The adversary makes at most (qe + qd) < 2n−1 queries.

Proof. An ideal PRI implemented using lazy sampling is given in Algorithm 1. Let A be
an adversary that runs in time at most t, makes qe queries to f and qd queries to f−1 and
returns (K1, W1, M1) and (K2, W2, M2). If (K1, W1) = (K2, W2), then f(K1, W1, M1) =
f(K1, W1, M2) if and only if M1 = M2, which is not a valid challenge. Thus, for a valid
challenge, (K1, W1) ̸= (K2, W2) must hold. Next, we describe a sequence of hybrid games,
where Ei is the event that the adversary wins in game i. Game 0 is the game where the
oracles are described according to Algorithm 1. In game 1, an adversary B accepts queries
from A, queries f/f−1 and passes the response back to A. B also keeps a query table, and
terminates the game if

• Two queries to f lead to the same response. For all the pairs where (K1, W1) =
(K2, W2), this event is impossible. Thus, the probability of this event is maximized
when (K, W) is unique for all queries, which is bounded by

(
qe

2
)
/2n.

• A query to f−1 returns M ̸=⊥.

For the second event, assume that the first i− 1 queries to f−1 all returned ⊥. The ith

query is (Ki, Wi, Ci). The probability of Mi ̸=⊥ is

≤ |EligX|
|EligY| .

Mustafa Khairallah 219

We know that |EligX| ≤ 2m+1 − 1. On the other hand, |EligY| = 2n − qKi,Wi
e − qKi,Wi

d ,
where qKi,Wi

e and qKi,Wi

d are the number of queries that share the same (Ki, Wi) as the
ith query. Let qKi,Wi

e + qKi,Wi

d ≤ 2n−1, then

|EligX|
|EligY| ≤

2(2m+1 − 1)
2n

≤ 4
2n−m

.

Thus, the second event is bounded by a simple hybrid argument by 4qd/2n−m, and

|Pr[E0]− Pr[E1]| ≤ q2
e

2n
+ 4qd

2n−m
.

If B does not terminate, then the challenge can succeed only if at least one of (K1, W1, M1)
and (K2, W2, M2) has not appeared in any previous query and (K1, W1) ̸= (K2, W2).
Since f(K1, W1, M1) and f(K2, W2, M2) are the outputs of two independent and uniformly
random injections, without loss of generality, we assume that (K2, W2, M2) did not appear
in any previous query, and

Pr[E1] ≤ 1
2n − qK2,W2

e − qK2,W2
d

≤ 2
2n

.

Finally,

εcr ≤ Pr[E1] + |Pr[E1]− Pr[E0]| ≤ q2
e + 2
2n

+ 4qd

2n−m
.

Comments and comparison to [BH24]: The bound in Proposition 1 is similar to
the bound given by Bellare and Hoang [BH24, Proposition 5.4] but for any ideal PRI
rather than EtE. In [BH24], Bellare and Hoang gave an invertible PRF construction that
they dubbed Hash-then-Mask (HtM). The construction is essentially a PRI when K is
secret and random, but it is not an ideal PRI when the key can be chosen. However,
they provided a security proof for its collision resistance. The construction can be seen as
f : {0, 1}k × {0, 1}≤m → {0, 1}b+τ , where b and k are the block size and the key size of an
underlying block cipher, respectively, and m, τ < b are parameters of the scheme. They
showed that for the HtM construction,

εcr ≤
4(b + τ)(qe + qd) + 5

2τ

which limits the security to τ − log(b + τ) bits. The optimal security, according to
Proposition 1, is min((b + τ)/2, b + τ −m). Since τ < b, then (b + τ)/2 > τ . If m ≈ τ ,
then b + τ −m ≈ b. In all the cases, we can show that as long as b−m and b− τ are less
than log(b + τ), then HtM is close to optimal, with gap at most 2log(b + τ).

Another observation is that, even in the ideal case, we have a term on the form q/2n−m,
which can be problematic if m is large. Even if m is relatively small, the advantage is larger
than an optimal compression function. When we refer to Proposition 1 as the optimal
bound, we are restricting ourselves to ideal functions according to Definition 3. The reason
for that is two-fold:

1. The construction is expected to produce the output of a PRF or an AEAD scheme.
Thus, the output should be indistinguishable from random when the key is secret
and uniform. Optimal, in this scenario, refers to a function that is indistinguishable
from random for every key selection.

2. One may envision pathological constructions that do not allow collisions, or have
better bounds. Not only are these constructions not likely to be indistinguishable
from random, but also they are hard to define when h + k is much larger than n.

220 Revisiting Leakage-Resilient MACs and Succinctly-Committing AEAD

3.2 strong Unforgaebility with verification Leakage (sUF-L2):
This security notion was introduced by Berti et al. [BGPS21] for MACs. The adversary
interacts with a MAC function using two oracles: Mac to generate tags, and Ver to verify
tags. Each oracle has an associated leakage function Lm and Lv, respectively. The adversary
also has access to an offline leakage function L that it can query with any chosen key. This
models an adversary that has access to an identical device and can use it to profile the
victim’s implementation. The adversary does not make trivial queries and wins if any of
the queries to Ver returns true. We define a MAC based on the PRI as follows:

Definition 4. Let the plaintext space be {0, 1}w×M and the tag space is C. Mac(K, W, M)
returns (f(K, W, M), Le(K, W, M)). Ver(K, W, M, C) returns (true, Ld(K, W, M, C)), if

f−1(K, W, C) = M,

and (false, Ld(K, H, M, C)), otherwise.

We say an implementation of the MAC in Definition 4 is (εsUF−L2, qL, qe, qd, t)-sUF-L2
secure if for any adversary A that makes qL offline queries to L, qe queries to Mac, qd

queries to Ver, and runs in time at most t,

Pr[A wins] ≤ εsUF−L2.

Depending on how the PRI and equality check are implemented and the different
leakage functions, the game captures one of two adversarial goals:

1. It should be hard for the adversary to return a valid point (W, M, C) such that
f(K, W, M) = C.

2. It should be hard for the adversary to return a valid tweak-ciphertext pair (W, C)
such that f−1(K, W, C) ̸=⊥.

For instance, if the implementation uses an equality check with unbounded leakage,
or the syntax is restricted by not letting the adversary input a candidate plaintext, then
predicting any valid unseen ciphertext of the PRI is akin to a successful forgery. This can
be useful when the construction is used in an AEAD scheme and the plaintext is part
of the output. In the remainder of this section, we will show two strategies to achieve
security against each of these two goals, starting with the latter for its simplicity. Then,
we will provide comments on how these PRIs may be instantiated in practice. In Table 1,
we give a summary of the models considered and the asymptotic security achieved.

Table 1: Summary of the security bounds achieved in this section, under different assump-
tions

PRI Leakage Model Value Comparison Leakage Model Security Bound
leak free leak free O(qd

2n + εpri)
leak free unbounded leakage O(qd

2n−m + εpri)
leak free leakage resilient O(qdε1−vc

2n−m + εpri)
unpredictable with leakage unbounded leakage (qd + 1)εvld−L2

3.2.1 Unbounded Leakage Value Comparison

In this model, we define the leakage functions as

Le(K, W, M) = (W, M, f(K, W, M), Lf)

Mustafa Khairallah 221

and
Ld(K, W, M, C) = (W, M, C, f−1(K, W, C), Lf).

In this case, the adversary can trivially win the game if it makes any query where
f−1(K, W, C) ̸=⊥. Lf is the leakage associated with running either f or f−1 on a specified
point. If Lf =⊥ for all queries, this is defined as the leak-free model. A simple hybrid
argument shows that

εsUF−L2 ≤ εpri + 4qd

2n−m
,

where qe + qd ≤ 2n−1. However, if Lf leaks non-trivial information, the analysis depends
on the implementation. In order to differentiate between the case of unbounded leakage
value comparison vs. leakage-resilient value comparison, we need to define a new notion
for the security of the PRI with leakage, which is inspired by the sUP-L2 model introduced
in [BGPS21].

Definition 5. Let f : {0, 1}k × {0, 1}w ×M → C be a PRI according to Definition 1
with associated leakage functions Lf , Lf−1 . We say that f is (εvld−L2, qL, qe, qd, t)-Valid-
Unpredictable ((εvld−L2, qL, qe, qd, t)-vld-L2 secure) if for any adversary that makes qL offline
leakage queries, qe forward queries and qd backward queries, runs in time at most t and
returns a pair (W, C) ∈ {0, 1}w × C that did not appear in any of the queries,

Pr[f−1(K, W, C) ̸=⊥] ≤ ϵvld−L2.

The εsUF−L2 bound can be derived in a similar fashion to the proof of [BGPS21, Theorem
1].

Proposition 2. Let f be a (εvld−L2, qL, qe, qd, t′)-Valid-Unpredictable PRI defined according
to Definition 1. Then, we can build a MAC Mac : {0, 1}k × ({0, 1}w ×M)→ C such that
Mac is (εsUF−L2, qL, qe, qd, t)-sUF-L2 secure, with

εsUF−L2 ≤ (qd + 1)εvld−L2,

where t′ = lin(t).

Proof. We construct the MAC in Definition 4. Let A be a (qL, qe, qd, t)-sUF-L2 adversary.
Let B be a (qL, qe, qd, t′)-vld-L2 adversary against f . B interacts with A and uses f to
simulate the MAC. Using a hybrid argument, we consider that B terminates the game if
during any Ver query, B receives a response from f−1 other than ⊥. The probability that
B terminates at query i ≤ qd is bounded by εvld−L2. Thus,

Pr[B terminates] ≤ qdεvld−L2.

If B does not terminate, it receives the outcome of A; (W, C) and queries f−1(K, W, C).
It wins if f−1(K, W, C) ̸=⊥. Thus, the overall bound is given by

εsUF−L2 ≤ (qd + 1)εvld−L2.

Interpretation and Issue in [BGPS21]: If the PRI is heavily protected, then it is
expected that εvld−L2 ≤ 4/2n−m + εpri. Interestingly, the security bound in the leakage-
resilient model is significantly worse that the leak-free mode. This is an issue in the
security modeling rather that a drop in security. To explain this, we show an error in
the interpretation provided by Berti et al. [BGPS21]. The authors of [BGPS21] prove
that the strong unforgeability with leakage (sUF-L2) of the PRI part of their construction
(LRMAC1) is bounded by

εsUF−L2 ≤ (qd + 1)εsUP−L2,

222 Revisiting Leakage-Resilient MACs and Succinctly-Committing AEAD

where εsUP−L2 is the probability that an adversary interacting with a leaking TBC can
predict a plaintext-ciphertext pair of the TBC that has not been queried using either the
encryption of the decryption oracle, regardless of the observed queries. The authors then
conclude that this bound is beyond birthday bound and in the black-box model, it implies

(qd + 1)εsUP−L2 ≤ εstprp + (qd + 1)
2n − qe − qd

.

Unfortunately, this conclusion is not true2 . First, note that the above inequality has two
computational security terms; εsUP−L2 and εstprp. On the left hand side, the computational
term is multiplied by by the number of queries, while the term in the right hand side is
not. This leads to several contradictions. For starters, the inequality implies that

εsUP−L2 = O

(
1
2n

+ εstprp
qd + 1

)
.

Clearly, this cannot be true as it implies that unpredictability can be improved, relative
to pseudo-randomness, by increasing the number of verification queries. Moreover, we
can show that the inequality does not hold for a wide selection of parameters. We shall
use the case where the PRI or MAC are implemented using an ideal TBC. We consider
the case where the adversary makes qp chosen-key queries to the ideal TBC, qe forward
construction queries and qd backward construction queries. The ideal TBC has key size of
k. It is easy to see that

εsUP−L2 ≥ qp/2k

which is the lower bound from any key guessing adversary, i.e. brute-force attacks. Thus,

(qd + 1)εsUP−L2 ≥ (qd + 1)qp/2k.

On the other hand, εstprp can be much smaller, and in fact for uniform adversaries it is
typically assumed that when the TBC is ideal,

εstprp ≤ qp/2k

nullifying the inequality.

3.2.2 Leakage-Resilient Value Comparison with PRI

One may not be satisfied with a MAC that outputs an n-bit tag but only provides (n−m)-
bit unforgeability. We can improve this at the implementation-level by using a better value
comparison function and more secure leakage functions.

We define a leakage-resilient value comparison function following [DM21] as follows:

Definition 6. Let VC : (M∪{⊥})×M→ {true, false}, with associated leakage function
LVC, be a value comparison function. VC(X, Y) = true if X = Y , and false, otherwise.

Using Definition 6, we can redefine new leakage functions for the MAC as follows:

Definition 7. Let Mac be a MAC function defined according to Definition 4, but the
equality check is replaced with VC given in Definition 6. The leakage functions associated
with the oracles are given by

Le(K, W, M) = (W, M, f(K, W, M), Lf)

and
Ld(K, W, M, C) = (W, M, C, LVC, Lf).

2It is not clear to us how obvious this observation is to researchers in general, so we err on the side
of caution and take some space to discuss this issue. We have disclosed this issue in October 2022 to
Francesco Berti and Chun Guo, designers of LRMAC1.

Mustafa Khairallah 223

Note that instead of leaking the actual value of the output of f−1, the oracle only
leaks the associated leakage of VC. In other words, the adversary does not trivially know
whether a query to f−1 returned a valid plaintext or not. Giving a concrete bound for
εsUF−L2 requires delicate analysis of the implementation and how the two primitives interact.
However, we can perform an abstract analysis in the case when f is leak-free.

One important question is whether this configuration leads to any benefit compared to
simply performing f in the forward direction in both Mac and Ver, and comparing the
tags using leakage-resilient value comparison. While this solution maybe indeed close, it
has less flexibility as the security boils down to only the value comparison function: even
if the PRI is perfectly secure, breaking the value comparison function using side channel
analysis is sufficient to forge a tag. We would like to maintain the benefit of using the
inverse function. In other words, we would like to maintain non-trivial security in the case
when the PRI is safe but the value comparison is broken, but get better security when
value comparison is secure. We also should point out that this is a generalization of the
concept presented in [BGPS21], one can set m = 0 to remove reliance on value comparison
completely. Another benefit of defining the value comparison function on M and not C is
that depending on how much resources we are willing to allocate to the value comparison
function, we can set m≪ c. Besides, our goal is to explore the design space using PRIs,
including slightly worse combinations, rather than provide an optimal solution.

Leakage-Resilient Value Comparison: Dobraunig and Mennink [DM21] defined the
leakage-resilient value comparison model as follows: Consider a game where the challenger
selects µ targets {M1, . . . , Mµ} ∈ Mµ, the adversary makes qd queries on the form (i, M ′)
and the challenger returns true if and only if Mi = M ′. It also returns the associated
leakage function LVC. Then, we say that VC is (µ, ε,qd, t)-VC-secure if

Pr[{M1, . . . , Mµ}
$←−Mµ : (i, M ′)← AVC|M ′ = Mi] ≤ εvc.

A special case is when we condition the probability such that the first qd verification query
return false. In other words,

Pr[{M1, . . . , Mµ}
$←−Mµ : (i, M ′)← AVC|M ′ = Mi,∀1 ≤ j ≤ qd, VC(ij , M ′

j) = false]

≤ ε1−vc,

in which case we say the scheme is (µ, εvc, qd, t)-1-VC-secure. To understand the relation
between the two bounds, consider an adversary A that terminates after the first successful
forgery vs. an adversary B that does not terminate. A simply runs B and terminates after
the first successful forgery. Thus, both adversaries have the same advantage. By a simple
hybrid argument, we can then see that

εvc ≤ qdε1−vc.

However, ε1−vc is more flexible as a tool when considering proofs of larger schemes.
Next, we look at how to combine the security of the PRI in the leak-free model with
the leakage-resilient VC. The main challenge is estimating µ. Note that if the adversary
performs a query (K, W, M1, C), followed by another query (K, W, M2, C), f−1(K, W, C)
is the same in both queries. However, the adversary does not trivially know whether
f−1(K, W, C) =⊥, or not. If f−1(K, W, C) =⊥ then all such queries shall fail and the value
comparison function does not operate on useful targets. Thus, µ should be the number of
non-trivial unique values f−1(K, HW, C) ̸=⊥ that appear in verification queries.

Proposition 3. Let f be a (εpri, t1)-secure leak-free PRI defined according to Definition 2
and VC : ({0, 1}≤m ∪ {⊥})× {0, 1}≤m → {true, false} be a (qd, ε1−vc, qd, t2)-1-VC-secure

224 Revisiting Leakage-Resilient MACs and Succinctly-Committing AEAD

value comparison function. Then, we can build a MAC Mac : {0, 1}k × ({0, 1}w ×M)→ C
such that Mac is (εsUF−L2, qL, qe, qd, t)-sUF-L2 secure, with

εsUF−L2 ≤ εpri+
4qdε1−vc

2n−m
,

where t1 = lin(t) and t2 = lin(t), and

Mac(K, W, M) = f(K, W, M)

and
Ver(K, W, M, C) = VC(f−1(K, W, C), M).

Proof. We construct a sequence of hybrid games. Let Ei be the event that the adversary
wins in game i. The adversary does not make trivial queries.
Game 0: the real-world game. The adversary wins if it forges the scheme.
Game 1: we replace the PRI with a (εpri, t1)-secure PRI.

|Pr[E0]− Pr[E1]| ≤ εpri,

such that t1 = lin(t).
Game 2: the game terminates if any query to VC returns true. First, we need to make sure
that the oracle does not query VC with trivial queries, i.e., queries that it trivially knows
the answer to. Consider that the adversary makes a verification query (W, M, C), followed
by an encryption query (W, M ′), such that M ̸= M ′ and f(W, M ′) = C. If such event
occurs, the adversary trivially learns one of the targets of comparison. However, it cannot
use this value to forge VC as the query becomes a trivial query for Ver. Thus, we can safely
assume that for any query Ver(K, H, M, C), there is no previous query Mac(K, W, M) = C.
We can construct an adversary B that runs A, observes the queries A makes and if the
game terminates, it uses the last Ver query to break the value comparison game. B can
index the value comparison targets using (W, C). In other words, there is an injective
encoding from (W, C) to the target index space. However, B (or A) can only succeed
against the target indexed by (W, C) if f−1(K, W, C) ̸=⊥. Consider the PRI implemented
using lazy sampling (Algorithm 1). The probability that this is true is determined by the
first time f−1(K, W, C) is called, and bounded by

|EligX|
|EligY| ≤

4
2n−m

.

We can construct a sequence of hybrid games such that game 10 is game 1 and game 1qd

game 2. Game 1i is the game that terminates if the ith query is successful. We have that

|Pr[E1i]− Pr[E1i+1]| ≤ 4ε1−vc
2n−m

.

Thus,
|Pr[E1]− Pr[E2]| ≤ 4qdε1−vc

2n−m
.

If game 3 does not terminate, then A cannot win, i.e., Pr[E2] = 0. The overall bound is
given by

Pr[E2] + |Pr[E1]− Pr[E2]|+ |Pr[E0]− Pr[E1]|.

Proposition 3 shows that we can recover some of the security using a leakage-resilient
value comparison function. However, the value comparison function in the proof is assumed
to handle as high as qd targets. In practice, this is not tight as only the targets that are
not ⊥ are relevant to the adversary. On the other hand, if the value comparison function
is leak-free, the bound becomes O(qd/2n + εpri) which is almost optimal for a MAC with
n-bit output.

Mustafa Khairallah 225

3.3 Instantiations and Practicalities
After we have shown the useful properties of PRIs, a valid question is how practical is
this primitive. We look forward a little bit and consider how the PRI will be used in the
remainder of the paper. The most obvious way to instantiate a PRI is using a TBC in
the EtE framework. If the TBC is an ideal TBC, then indeed the resulting PRI is almost
ideal in two respects:

1. [BH24] proved the collision resistance of this approach, while we proved the collision
resistance of an ideal PRI. The two bounds match, showing that PRIs built using
EtE have the same collision resistance as ideal PRIs.

2. The ideal TBC keyed with a secret random key enjoys full STPRP security, which
translates to full PRI security.

However, one has to be careful, as ideal TBCs are not real-world primitives, and the way
we know how to use constructions from ideal TBCs is by using adhoc TBC that have
been built from scratch and have stood the test of time against cryptanalysis. Then, we
assume that they behave as closely as possible to ideal TBCs. Typically, TBCs built from
smaller primitives using security reductions are not designed to behave as ideal TBCs or
be collision resistant. This presents a challenge, and opens avenues for new TBC designs
as we discuss below.

PRIs with 64-bit collision resistance: One of our goals is building CMT4-secure
AEAD schemes, which boils down to the collision resistance of the underlying PRI. In this
scenario, collision resistance is the limiting factor, especially since the collision resistance
can be foiled using only offline queries/time complexity of the adversary. However, we
note that many practical so-called CMT4-secure AEAD schemes offer only 64-bit security:
Ascon [DEMS21], whose CMT4 security was studied in [KSW23], and TEDT [BGP+20]
and Triplex [SPS+22] AEAD schemes, whose CMT4 security was studied in [DEJ+24].

To match this security level, we can simply use a 128-bit TBC with large tweak space and
set m = 64. Two such TBCs have been extensively studied: Deoxys-TBC [JNPS21] (winner
of the CAESAR competition) and SKINNY [BJK+16] (finalist of the NIST lightweight
cryptography project, as part of the Romulus family [GIK+21]). Using this set-up, with
either TBCs, gives the same CMT4 security level as Ascon or the schemes in [DEJ+24],
with only half the ciphertext expansion.

PRIs with >64-bit collision resistance: We believe we need higher security for CMT4
and collision resistance. [BH24] provides a PRI construction (HtM) that achieves PRI
security and collision resistance. The collision resistance is sufficient (∼ 90-bit security
using 2 calls to a 128-bit primitive). Its PRI security is studied with multi-keys and no
tweaks. It is easily adaptable to our use case (single key, many tweaks). This is not an
ideal PRI anymore, but it has dedicated analyses for collision resistance and PRI security.
However, it suffers from a birthday-bound term in its PRI security.

We believe a 256-bit TBC is needed. However, there is no accepted scheme, to the best
of our knowledge. There has been recent attempts: Pholkos [BLLS22] and Ghidle [NSA+23].
Whether these schemes stand the test of time remains to be seen.

Of course, another possibility is to use a BBB-secure domain extender of the TBC
(HtM is arguably such an extender but with only birthday-bound security). Recent work
on BBB TBC constructions focused on increasing the tweak size rather than the block
size. Another alternative is to use a wide tweakable block cipher with BBB security,
limiting its block size. However, such solutions are not very efficient for small messages and
their collision resistance is not studied. Building a TBC domain extender that maintains

226 Revisiting Leakage-Resilient MACs and Succinctly-Committing AEAD

collision resistance and does not suffer birthday bound drop, while being practical, is an
interesting problem.

All in all, our results can be seen as motivation to either study 256-bit TBCs or design
efficient domain extenders.

A different instantiation of the PRI with value comparison using a forkcipher: A
forkcipher is inherently a PRI, but potentially not a very good one. Its encryption function
is a keyed function: f : {0, 1}k × {0, 1}w × {0, 1}n → {0, 1}n × {0, 1}n. It takes a secret
key K, tweak W and plaintext M and returns two ciphertext blocks Cl and Cr that are
indistinguishable for two encryptions of M using two different TBCs. To invert the function,
we need only one of the two ciphertext blocks. Given (K, W, Cl) we can recover (M, Cr)
and given (K, W, Cr) we can recover (M, Cl). We can also have partial implementations
that from one ciphertext block, generate only the other one or the plaintext. Consider
a leak-free implementation of the forkcipher. Mac uses the forkcipher to generate the
left ciphertext block Cl = T from M . Ver generates C ′r form that T . It also uses the
input plaintext M to generate a right ciphertext block C ′′r and checks if C ′r = C ′′r . If the
forkcipher is ideal and leak-free, then the probability that any adversary find such a forgery
should only be bounded by O(qd/2n). A similar MAC is independently studied in [BSL24]
but with smaller tweak space and without any part of the plaintext being processed by
the forkcipher. This approach can be another interesting avenue for further studies.

4 A Leakage-Resilient Message Authentication Code

LRMAC1, depicted in Figure 1(a) is an elegant MAC construction proposed by Berti et
al. [BGPS21] as a leakage-resilient MAC from non-idealized assumptions: strong unpre-
dictability of the TBC and a collision-resistant public hash function. The designers assume
that all the internal values of the hash function can be leaked, but the TBC remains
unpredictable with leakage. The designers claim that it has beyond birthday security,
particularly in the black-box model. In the previous section, we have shown an issue
with this claim, such that if we would like to claim BBB security with known techniques,
we need leak-freeness. In this section, we generalize LRMAC1 to iLRMAC (depicted in
Figure 1(b)). Recently, Dhar et al. [DEJ+24] studied the collision resistance of LRMAC1,
showing that it is collision-resistant up to half the block size of the TBC, as long as the
hash function is collision-resistant and the TBC is an ideal cipher.

M

H

Ẽ
K

0n

T

(a)

M ′

H

PRI
K

M⋆

T

(b)

Figure 1: Leakage resilient MACs: (a) LRMAC1. (b) The newly proposed iLRMAC.

Mustafa Khairallah 227

Generalized LRMAC1: The proposed MAC can be seen as a generalization of LR-
MAC1 [BGPS21] but allows more flexibility to adjust the security level based on the
available implementations of heavily protected components; in this case, a keyed tweakable
injective function and leakage-resilient value comparison.

The iLRMAC construction is depicted in Figure 1(b). Instead of a TBC, we use a PRI
f : {0, 1}k × {0, 1}h × {0, 1}≤m → {0, 1}n, where m < n. If |M | ≤ m, then M⋆ = M
and M ′ = ϵ (the empty string). If |M | > m, then M⋆ = M [|M | − m + 1 : |M |] and
M ′ = M [1 : |M | −m]. In the former case, Hϵ = H(ϵ) is the hash tag of the empty string,
and the tag is computed as f(K, Hϵ, M⋆). Since Hϵ can be precomputed, the cost when
the message length is less than m is just one call to the f . The tweak space in this case is
the same as the hash function output space: {0, 1}h.

4.1 Collision Resistance
In this section, we study the collision resistance of the MAC construction described in
Algorithm 2.
Theorem 1. Let f : K×{0, 1}h×{0, 1}≤m → {0, 1}n be a (ε1, t1)-collision-resistant PRI,
such that n > m and f−1 : {0, 1}k ×{0, 1}h×{0, 1}n → {0, 1}≤m ∪ {⊥} is its inverse. Let
H : Kh ×M → {0, 1}h be a (ε2, t2)-collision-resistant hash function. Then, iLRMAC is
(ε, t)-collision-resistant, where

ε ≤ ε1 + ε2,

where t1 = lin(t) and t2 = lin(t).
Proof. Suppose A outputs (K1, M1) and (K2, M2) such that iLRMAC[H, f](K1, M1) =
iLRMAC[H, f](K2, M2).

Let B be a collision finding adversary against H and C be a collision finding adversary
against f . B runs A and outputs (M ′

1, M ′
2). We use a hybrid argument: let game 0 be the

collision resistance game, and game 1 terminates if B is successful. Let Ei be the event
that A wins in game i. Thus,

|Pr[E0]− Pr[E1]| ≤ ε2.

Let C be an adversary trying to find a collision for f that runs B, and let game 2 be almost
the same as game 1, but B returns (M ′

1, M ′
2, H(M ′

1), H(M ′
2), K1, K2, M⋆

1 , , M⋆
2) instead of

just (M ′
1, M ′

2). C returns ((K1, H(M ′
1), M⋆

1), (K2, H(M ′
2), M⋆

2)). This can only improve
C’s advantage;

Pr[E1] ≤ Pr[E2].
Besides, if the game does not terminate, then H(M ′

1) ̸= H(M ′
1) or M ′

1 = M ′
2. The latter

implies (K1, M⋆
1) ̸= (K2, M⋆

2). A can win only if either B (in which case the game would
terminate) or C win. Thus,

Pr[E2] ≤ ε1.

The overall bound is

Pr[E1] + |Pr[E0]− Pr[E1]| ≤ Pr[E2] + |Pr[E0]− Pr[E1]| ≤ ε1 + ε2.

We note that the running time of both B and C is the running time of A in addition to a
constant number of checks.

4.2 strong Unforgeability with Leakage
The LRMAC1 construction [BGPS21] can be retrospectively seen as a special case of our
iLRMAC, where M⋆ = ϵ and the PRI is implemented using EtE. Thus, we expect the
security properties of LRMAC1 to also generalize to iLRMAC. The iLRMAC is formally
described in Algorithm 2.

228 Revisiting Leakage-Resilient MACs and Succinctly-Committing AEAD

Algorithm 2 The iLRMAC construction with leakage-resilient value comparison. Le and
Ld are according to Definition 7.
1: Mac(K, M) :
2: M⋆, M ′ ← parse(M)
3: V ← H(M ′)
4: return Le(K, V, M⋆)

5: Ver(K, M, T) :
6: M⋆, M ′ ← parse(M)
7: V ← H(M ′)
8: return Ld(K, V, M⋆, C)

Theorem 2. Let H be a (εcr, t1)-collision resistant hash function. Let Le and Ld be two
oracles according to Definition 7 where the short MAC is (qL, qe, qd, t2, ε′sUF−L2)-sUF-L2-
secure. Then, iLRMAC is (qL, qe, qd, t, εsUF−L2)-sUF-L2 with:

εsUF−L2 ≤ εcr + ε′sUF−L2,

with t1 = lin(t) and t2 = lin(t).

Proof. The proof follows from a simple hybrid argument, where we consider a hybrid game
that terminates if a collision is found for the hash. If no collision exists, then the adversary
can only win if it forges the short MAC.

Our results show that we can add more flexibility to LRMAC1 by processing part of
the plaintext by the heavily protected component, at the cost of using a leakage-resilient
value comparison function. However, the value comparison function does not have to be
very costly. Dobraunig and Mennink [DM21] showed that this function does not have to
be heavily protected if implemented using a public primitive. Thus, we believe iLRMAC is
a valuable generalization of LRMAC1 adding more space for flexibility and trade-offs. The
system engineer can decide how much weight to put on the leakage-based adversaries. The
system can have strong black box security, and weaker, but non-trivial, leakage-resilient
security.

5 Succinctly-Committing Online AEAD
In this section, we use PRIs to construct a succinctly-committing AEAD scheme with CIML2
security and black-box privacy. The scheme can also provide privacy with leakage, but we
leave this out of scope as standard techniques can be used to instantiate our construction.
Instead, we focus on this construction as a blueprint, similar to the blueprints discussed
in [DEJ+24]. We use a function that has partial collision resistance: The function takes
almost all the inputs of the AEAD scheme and generates the ciphertext and a hashed
value of the ciphertext. For a fixed key, the hashed value is collision-resistant. This is
formalized in Section 2.

Note that H is not a hash function: we make no claims about its collision resistance
for different keys. It is also neither a committing AEAD scheme nor an AEAD scheme in
general, as we make no claims about the randomness of the hashed value. Such function
could have many realizations. It could be realized using a duplex sponge construction
without squeezing. It could also be realized as a stream cipher keyed with K ∈ K, followed
by a public hash function of the ciphertext, nonce and associated data. Triplex [SPS+22]
without finalization, is also a realization of this function. This way, we can make general
claims about a wide class of realizations. We define an AEAD scheme as follows:

Definition 8. Let H : Kh × K × N × A × {0, 1}∗ → {0, 1}∗ × {0, 1}h be an (ε1, t1)-
collision-resistant encryption function. Let f : K × {0, 1}h × {0, 1}≤m → {0, 1}n be
an (ε2, t2)-collision-resistant PRI. We define Π[H, f] to be the AEAD scheme defined in
Algorithm 3. The ciphertext expansion of Π is n−m for messages longer than m bits.

Mustafa Khairallah 229

Algorithm 3 The scoAE construction.
Π.Enc(K, N, A, M) :
M⋆, M ′ ← parse(M)
(C, V)← H(K, N, A, M ′)
return (C, f(K, V, M⋆))

Π.Dec(K, N, A, C, T) :
(M ′, V)← H−1(K, N, A, C)
M⋆ = f−1(K, V, T)
if M⋆ =⊥ then

return ⊥
else

return M ′∥M⋆

end if

Theorem 3. Let Π[H, f] be the AEAD scheme given in Definition 8. Let H be an (ε1, t1)-
collision-resistant encryption function and f be an (ε2, t2)-collision-resistant PRI. Then,
Π is (εcmt4, t)-CMT4 secure, such that

εcmt4 ≤ ε1 + ε2,

where t1 = lin(t) and t2 = lin(t).

Proof. Let A be a CMT4 adversary that outputs

(K1, N1, A1, M1, K2, N2, A2, M2).

Let B be a collision finding adversary against H that runs A and outputs

(K1, N1, A1, M ′
1, N2, A2, M ′

2)

if K1 = K2. Let C be collision-finding adversary against f that runs B and has access to
the output of H, similar to the proof of Theorem 1. It outputs ((K1, V1, M⋆

1), (K2, V2, M⋆
2))

We consider two types of challenges that A may return:

1. K1 = K2: In this case, if (K1, V1) = (K2, V2), then a collision on the tag occurs only
if M⋆

1 = M⋆
2 . If M⋆

1 = M⋆
2 , then it must hold that (N1, A1, M ′

1) ̸= (N2, A2, M ′
2) for

the challenge to be valid, and if A is successful, then B is successful. If M⋆
1 ̸= M⋆

2
and V1 = V2, then A cannot be successful. If If M⋆

1 ̸= M⋆
2 and V1 ≠ V2, then if A is

successful, then C is successful: εcmt4 ≤ ε1 + ε2.

2. K1 ̸= K2: In this case, if A is successful, then C must be successful: εcmt4 ≤ ε2.

The bound follows from the maximum of the two cases.

Next, we study the privacy of scoAE. Since the details of H are abstracted away, we
cannot argue its security in the presence of leakage in a meaningful way, and limit our
analysis to the black-box setting. Standard techniques, such as those used in TEDT or
Triplex, can be used to elevate the result to the leakage resilience setting. Note that for
CMT4 security, we assumed ideal primitives, but for privacy and integrity, this is not
always the case. We face an issue where both H and f are keyed by the same key, which
is needed for CMT4 security. In order to make sure the appropriate domain separation is
maintained, we need to go one level of abstraction lower, and define how H processes the
key, relative to f . This is done in Definition 9.

Definition 9. Let H̃ : Kh × {0, 1}n ×N ×A× {0, 1}∗ → {0, 1}∗ × {0, 1}h be an (ε1, t1)-
collision-resistant encryption function with unbounded leakage. Let Ẽ : K × {0, 1} ×
{0, 1}h×{0, 1}n → {0, 1}n be a leak-free TBC. We define Π[H, Ẽ] to be an AEAD scheme
defined in Algorithm 4. The ciphertext expansion of Π is n−m for messages longer than
m bits.

230 Revisiting Leakage-Resilient MACs and Succinctly-Committing AEAD

Note that in this construction, the second call to the TBC is simply a PRI implemented
using EtE. For privacy, we also need an assumption on the pseudo-randomness of H̃. In
particular, for the purposes of the privacy security proof, we need to assume that H̃ is a
random oracle. This may seem inconvenient, but we recall that our privacy proof is not for
a particular scheme but for a generic high level blueprint, and once H̃ is fixed to a specific
function, it is very likely that this assumption can be removed. One may argue about the
value of such proof, but we believe this is necessary to show the soundness of the scheme,
overall.

Assumption 1. Let H̃ : {0, 1}n × N × A × {0, 1}∗ → {0, 1}∗ × {0, 1}h be an idealized
encryption function with a auxiliary output. We assume H̃ behaves as a random oracle.

Algorithm 4 The scoAE construction with a heavily protected Key derivation function.
Π.Enc(K, N, A, M) :
K0 ← Ẽ(K, 0, 0h, N)
M⋆, M ′ ← parse(M)
(C, V)← H̃(K0, N, A, M ′)
return C∥Ẽ(K, 1, V, M⋆∥1∥0n−|M|−1)

Π.Dec(K, N, A, C, T) :
K0 ← Ẽ(K, 0, 0h, N)
(M ′, V)← H̃−1(K0, N, A, C)
M⋆ = (Ẽ−1)(K, 1, V, C)
if M⋆ =⊥ then

return ⊥
else

return M ′∥M⋆

end if

Theorem 4. Let Π[H̃, Ẽ] be the AEAD scheme given in Definition 8. Let H̃ be a random
oracle with the interface in Assumption 1 and Ẽ be a (2qe +2qd, t1, εstprp)-secure TBC. Then
for any nonce-respecting adversary A against the IND-CPA security of Π[H̃, f], making qe

queries to Π.Enc and qH queries to H̃ and running in time at most t,

Advind−cpa
Π (A) ≤ εstprp + q2

e + q2
H + qeqH

2h
+ qH

2n

where t1 = lin(t).

Proof. The adversary has access to Π.Enc. It also has access to H̃ and can make queries
to it with chosen inputs. We construct a sequence of hybrid games. Let Ei be the event
that the adversary wins in game i.
Game 0: the real-world game.
Game 1: We replace the TBC with a uniformly random family of tweakable permutations
π̃:

|Pr[E0]− Pr[E1]| ≤ εstprp.

Game 2: We terminate the game if the adversary makes a query to H̃ directly with
inputs (K0, N, A1, M ′

1) and a query to Π.Enc with input (N, A2, M ′
2∥M⋆

2), such that
π̃(0, 0h, N) = K0. Since the adversary is nonce-respecting, each call to Π.Enc has a unique
nonce. For the ith query, the probability of this event is bounded by

qNi

H

2n
,

where qNi

H is the number of queries to H̃ on the form (·, Ni, ·, ·). We sum over all queries
to get

|Pr[E1]− Pr[E2]| ≤
∑qe

i=1 qNi

H

2n
= qH

2n
.

Game 3: We construct an adversary C against the collision resistance of H̃. At the end
of the game, we reveal all the auxiliary outputs of H̃. C runs A. After the last query,

Mustafa Khairallah 231

we reveal of auxiliary outputs during queries to Π.Enc. C also records the queries made
directly to H̃. C checks the augmented transcript and checks if there is a collision in any
of the implicit or explicit H̃ queries. Since we are in the single key setting, this can only
happen if a collision occurs in H̃. Thus, from the random oracle assumption,

|Pr[E2]− Pr[E3]| ≤ q2
e + q2

H + qeqH

2h
,

and the time of C is the time of A, the time needed to reveal the auxiliary outputs and qe

checks.
Game 4: we replace the final TBC call by a random function F . Note that the first
bit of the tweak ensures the permutations sampled at this step are independent of the
permutation sampled during the first call. This transition is akin to a restricted PRP-PRF
switch. Consider the tweakable permutation is implemented using lazy sampling: first T
is sampled uniformly at random, and if the sampled block has appeared as an output for
any F (Vj , ·) call, it is resampled appropriately.

For a query j ∈ [1 . . . qe] to F : F (Vj , M⋆
j), it always returns a random block unless that

block has appeared for any F (Vj , ·) call. Since game 2 would have terminated if a collision
on Vj has occurred, we can assume that if Vj = Vi, then (Nj , Aj , M ′

j) = (Ni, Ai, M ′
i).

Since the adversary is nonce-respecting, this cannot happen.

|Pr[E3]− Pr[E4]| ≤ 0.

Given no collisions occur on V , and the second TBC call is now replaced by a random
function, the tag T is indistinguishable from random in all queries. Thus, the only way
A can distinguish the ciphertexts generated by Π from random is by distinguishing the
ciphertext output of H̃ from random. Since H̃ is a random oracle, and its inputs during
Π.Enc do not repeat (A is nonce-respecting):

Pr[E4] = 0.

The final bound is then
3∑

i=0
|Pr[Ei]− Pr[Ei+1]| ≤ εstprp + q2

e + q2
H + qeqH

2h
+ qH

2n
.

Next, we show the CIML2 security. In this case, we do not need the random oracle
assumption, and the proof is a lot simpler.

Theorem 5. Let Π[H̃, Ẽ] be the AEAD scheme given in Definition 9. Let H̃ be an (εcr, t1)-
strongly-collision-resistant encryption function, Ẽ be a (2qe + 2qd, t2, εstprp)-leak-free TBC.
Then, for any adversary A against the CIML2 security of Π that makes qe encryption
queries and qd decryption queries and runs in time t,

Advciml2
Π (A) ≤ εstprp + εcr + 4qd

2n−m
,

where t1 = lin(t) and t2 = lin(t).

Proof. First, we replace Ẽ with a tweakable uniformly random permutation (TURP). This
gives the first term of the bound.

Next, we construct an adversary C that has access to the TURP and H̃ and simulates Π.
It records all the queries made to H̃ and terminates the game if a collision is found such that
(C1, V1) = H̃(K0,1, A1, M ′

1), (C2, V2) = H̃(K0,2, A2, M ′
2), (K0,1, A1, M ′

1) ̸= (K0,2, A2, M ′
2)

232 Revisiting Leakage-Resilient MACs and Succinctly-Committing AEAD

and V1 = V2. Let game 1 be the game where the adversary interacts with Π and game 2
be the game where the adversary interacts with C, where Ei is the probability that the
adversary wins in game i. Then,

|Pr[E1]− Pr[E2]| ≤ εcr.

Next, we consider the PRI built by the second call to the TURP. As discussed in Section 3,
it can be seen as a short MAC. We now consider an adversary B trying to forge the short
MAC. In order to use C in a security reduction, we need to show that C does not make
trivial queries to the short MAC. That is; it never queries the forward direction with
the same (V, M) twice, does not call the backward direction with queries it knows the
response to and does not attempt the same forgery (V, T) more than once. Since there is
no collisions on V , then each V that appears during encryption or decryption queries of the
AEAD corresponds to a unique tuple (K0, N, A, M ′, C). During encryption, the adversary
may attempt the same tuple multiple times but has to change M⋆, since they do not
make trivial AEAD queries. Similarly, during decryption if they ask for the decryption of
(N, A, C, ·) multiple times, they have to make the fourth input unique in all these attempts.
Lastly, if the adversary attempts a forgery that triggers a backward call to the PRI with
input (V, T), where (V, T) has appeared in a previous encryption query, then either the
query is a trivial AEAD query or there is a collision on V . Thus, we can describe the
reduction as follows: B runs C. If C does not terminate then all the calls it makes to the
short MAC are non-trivial queries. If A (which C runs) outputs a success forgery, then
B outputs the corresponding (V, T). Note that the adversaries can observe V as H̃ has
unbounded leakage. In the leak-free model of the TBC, the probability of a successful
forgery is bounded by

Pr[E2] ≤ 4qd

2n−m
.

This concludes the proof.

Comments on Theorems 3, 4 and 5: scoAE is generic enough that it allows us to
cover a wide class of AEAD schemes, while also being specific enough to allow us to
make significant security claims. Consider a message of length l > m bits. Then, scoAE
generates a ciphertext of length l −m and an n-bit tag. Thus, the ciphertext expansion
is (l −m + n) − l = n −m. It provides CMT4 security up to the collision resistance of
PRI (typically, it is easier to find collisions for the PRI than for the hash function). If
the PRI is implemented using a dedicated 128-bit TBC modeled as a leak-free ideal TBC,
and m = 64, then scoAE provides 64-bit CIML2 security and 64-bit CMT4 security, using
64-bit expansion. This is optimal, and applies also with nonce misuse and leakage. To
put this into perspective, Dhar et al. [DEJ+24] showed that TEDT [BGP+20] provides
n-bit CIML2 security and n/2-bit CMT4 security. Instantiated with the same TBC, TEDT
provides 128-bit CIML2 security and 64-bit CMT4 security with 128-bit expansion. If we
instantiate TEDT with a 64-bit TBC, we get similar CIML2 security to that of scoAE but
only half the CMT4 security. Besides, we could instantiate the PRI using two TBC calls,
using HtM, getting very good CMT4 and CIML2 security, as 64-bit CMT4 security can be
considered insufficient.

The security proof for privacy is admittedly tedious and requires a strong assumption
on H̃. However, we find this to be natural, and an artefact of our high abstraction level.
Since H̃ is not defined at a low level, it is natural than we need to make such a strong
assumption. We emphasize that the random oracle assumption is only used for privacy
and is not used to CMT4 or CIML2 security.

We note that scoAE provides a blueprint for enhancing the security of existing commit-
ting AEAD schemes with minimal changes. scoAE in its most abstract form (Theorem 3)
can be seen as the three phases of a duplex sponge design, such as Ascon, where the

Mustafa Khairallah 233

initialization and absorption parts represent H and the squeezing/finalization part is
replaced by PRI. The same can be said about Encrypt-then-MAC schemes, e.g. TEDT,
and Triplex.

6 Succinctly-Committing Misuse-Resistant AE
In this section, we present a second application of PRIs in the design of succinctly-
committing AEAD. We construct a misuse-resistant AEAD scheme, in a construction
dubbed scMRAE. The scheme is depicted in Figure 2 and described in details in Algorithm 5.
Before we delve into the security proofs, we provide some intuition. In terms of commitment,
it is easy to see that the security boils down to the collision-resistant of the hash-then-PRI
part of the construction. For AEAD security, consider an adversary making encryption
queries and no collision is found for the hash function. Thus, in all the encryption queries,
each triplet (N, A, M ′) maps to a unique hash value. We can use a PRP-PRF-switch
argument to show that when the tweak repeats only a small number of times, the output
of the PRI is indistinguishable from random. Let µ be the number of times the triplet
(N, A, M ′) appears in in encryption queries, then fKf

can be viewed as a PRF with a
logarithmic security degradation µ. In Figure 2, gKg is a stream cipher with T as an IV .
As long as T does not repeat, then the stream cipher is secure. If (N, M ′) repeats in two
queries, then either A or M⋆ must be different. If A is the also repeated in the same queries,
then T cannot be repeated, while if M⋆ is repeated, then A (and by assumption the hash
value) cannot be repeated. Thus, the security boils down to the collision resistance of fKf

.
We note that for commitment, we require that the keys of f and g use exactly the same
key (or dependent keys [DEJ+24]). However, this leads to an issue for MRAE security
notions, which could lead to an unnatural assumption; that it is secure to use the same
key in both f and g. Fortunately, there are multiple ways to satisfy this assumption. One
could build f and g from TBCs with disjoint tweak domains (using domain separation), or
could use the pseudo-random number generator to generate two dependent keys from one
key. We use the latter approach.

Algorithm 5 The scMRAE construction.
Π.Enc(K, N, A, M) :
(Kf , Kg)← PRNG(K)
M⋆, M ′ ← parse(M)
V ← H(N, A, M ′)
T ← f(Kf , V, M⋆)
C′ ← gKg (T)⊕M ′

return C′∥T

Π.Dec(K, N, A, C, T) :
(Kf , Kg)← PRNG(K)
M ′ ← gKg (T)⊕ C′

V ← H(N, A, M ′)
M⋆ ← f−1(Kf , V, T)
if M⋆ =⊥ then

return ⊥
else

return M ′∥M⋆

end if

Before studying the scheme we need to define the properties of PRNG.

Definition 10. Let PRNG : K → K2 be a pseudo-random number generator. We say
PRNG is a (ε, t)-secure pseudo-random number generator if for any adversary A running
in time at most t:

|Pr[K $←− K : 1← APRNG]− Pr[1← A$]| ≤ ε,

where $ is a random oracle that returns two random values in K2.

Definition 11. Let PRNG : K → K2 be a pseudo-random number generator. We say
PRNG is a (ε, t)-collision resistant pseudo-random number generator if for any adversary

234 Revisiting Leakage-Resilient MACs and Succinctly-Committing AEAD

H
fKf

gKg

M ′

N

A

M⋆

M ′

C ′

T

Figure 2: The scMRAE construction.

A running in time at most t:

Pr[(Kf1 , Kg1 , Kf2 , Kg2)← A s.t.Kg1 ̸= Kg2 ∧Kf1 = Kf2] ≤ ε

and
Pr[(Kf1 , Kg1 , Kf2 , Kg2)← A s.t.Kf1 ̸= Kf2 ∧Kg1 = Kg2] ≤ ε.

Theorem 6. Let H : Kh×{0, 1}∗×N ×A → {0, 1}h be an (ε1, t1)-collision-resistant hash
function. Let f : K×{0, 1}h×{0, 1}≤m → {0, 1}n be a (ε2, t2)-collision-resistant PRI. Let
g : K×{0, 1}h → {0, 1}∗ be a pseudo-random number generator. Let PRNG : K → K2 be a
(ε3, t3)-collision-resistant pseudo-random number generator. Let Π[PRNG, H, f, g] be the
authenticated encryption scheme where the encryption algorithm is defined in Algorithm 5.
Then, Π[H, f, g] is (εcmt4, t)-CMT4 secure AEAD scheme, with

εcmt4 ≤ ε1 + ε2 + ε3,

t1 = lin(t), t2 = lin(t) and t3 = lin(t).

Proof. Let A be a CMT4 adversary that output (K1, N1, A1, M1), (K2, N2, A2, M2). First,
consider the case that (Kg1 , C ′1) ̸= (Kg2 , C ′2) and M ′

1 = M ′
2. In this case, the adversary can

trivially win if Kf1 = Kf2 . The probability that the adversary finds key pairs (Kf1 , Kg1)
and (Kf2 , Kg2) that satisfy this condition is upper bounded by ε3. Next we assume that
Kg1 ̸= Kg2 implies Kf1 ̸= Kf2 and vice versa. If Kg1 = Kg2 , then we can see that C ′1 = C ′2
implies M ′

1 = M ′
2. Thus, it must hold that (Kf1 , N1, A1, M⋆

1) ̸= (Kf2 , N2, A2, M⋆
2). If

Kg1 ≠ Kg2 and Kf1 ̸= Kf2 , then also (Kf1 , N1, A1, M⋆
1) ̸= (Kf2 , N2, A2, M⋆

2). In both
cases, the inputs to the hash function and f are not equal. We analyze this case below.

We note that the challenge can only be successful if there is a collision on the tag
T . Consider an adversary B that tries to find a collision against H. It runs A and
outputs ((N1, A1, M ′

1), (N2, A2, M ′
2)). If (N1, A1, M ′

1) = (N2, A2, M ′
2), then B cannot win.

If (N1, A1, M ′
1) ̸= (N2, A2, M ′

2) then B wins if H(N1, A1, M ′
1) = H(N2, A2, M ′

2). Let E0
be the event that A wins in the original CMT4 game, and E1 be the event that A wins if
B does not win. Then,

|Pr[E0]− Pr[E1]| ≤ ε1.

On the other hand, if B does not win, H(N1, A1, M ′
1) ̸= H(N2, A2, M ′

2). and A can only
win if a collision for f is found.

Pr[E1] ≤ ε2.

Next, we look at integrity. We reduce the security to the MAC in Theorem 2, using
a trick proposed in [IKMP20], where we give the adversary access to the MAC and

Mustafa Khairallah 235

stream cipher separately. int− ctxt and ind− cpa refer to the integrity and confidentiality
security notions defined in Section 2, with nonce misuse but without leakage. In particular,
int− ctxt has the same as definition as ciml2 without the leakage functions/oracles.

Theorem 7. Let H : Kh × {0, 1}∗ × N × A → {0, 1}h be an (ε1, t1)-collision-resistant
hash function. Let f : K × {0, 1}h × {0, 1}≤m → {0, 1}n be a (ε2, t2)-secure PRI according
to Definition 2. Let g : K × {0, 1}h → {0, 1}∗ be a (ε3, t3)-secure pseudo-random number
generator. Let PRNG : K → K2 be a (ε4, t4)-secure pseudo-random number generator. Let
Π[PRNG, H, f, g] be the authenticated encryption scheme where the encryption algorithm is
defined in Algorithm 5. Then, for any adversary A making qe encryption queries and qd

decryption queries and running in time at most t,

Advint−ctxt
Π (A) ≤ ε1 + ε2 + ε3 + ε4 + 4qd

2n−m
,

t1 = lin(t), t2 = lin(t), t3 = lin(t) and t4 = lin(t).

Proof. First, we replace (Kf , Kg) by two uniformly random keys. This gives the term ε4.
Second, we replace f and g with a uniformly random tweakable injection and a uniform
random number generator g′, respectively. This gives the terms ε2 and ε3 of the overall
bound. Next, we modify the game by allowing the adversary access to the random number
generator where the adversary makes queries to the MAC

T = f ′(H(M ′, N, A), M⋆),

and the random number generator g′ separately, and is required to win a forgery game
against the MAC. This can only improve the adversary’s advantage and reduces the security
to Theorem 2 with leak-free PRI and no value comparison, which give the bound

ε1 + 4qd

2n−m
.

Combining the terms gives the overall bound.

Last but not least, we look at the confidentiality of the scheme.

Theorem 8. Let H : Kh × {0, 1}∗ × N × A → {0, 1}h be an (ε1, t1)-collision-resistant
hash function. Let f : K × {0, 1}h × {0, 1}≤m → {0, 1}n be a (ε2, t2)-secure PRI according
to Definition 2. Let g : K × {0, 1}h → {0, 1}∗ be a (ε3, t3)-secure pseudo-random number
generator. Let PRNG : K → K2 be a (ε4, t4)-secure pseudo-random number generator. Let
Π[PRNG, H, f, g] be the authenticated encryption scheme where the encryption algorithm
is defined in Algorithm 5. Then, for any adversary that makes qe encryption queries and
runs in time at most t,

Advind−cpa
Π (A) ≤ ε1 + ε2 + ε3 + ε4 + (µ− 1)qe

2n
+

(
qe

2
)

2n
,

where each triplet (N, A, M ′) is repeated at most µ ≤ 2m+1−1 times, t1 = lin(t), t2 = lin(t),
t3 = lin(t) and t4 = lin(t).

Proof. First, we replace (Kf , Kg) by two uniformly random keys. This gives the term ε4.
Second, we replace f and g with a uniformly random tweakable injection and a uniform
random number generator g′, respectively. This gives the terms ε2 and ε3 of the overall
bound. Next, we shall define a sequence of hybrid games, where Ei is the event that the
adversary is able to distinguish the ciphertexts from random strings in game i.
Game 0: the original game with f ′ and g′.

236 Revisiting Leakage-Resilient MACs and Succinctly-Committing AEAD

Game 1: We consider an adversary B that has access to H, f ′ and g′. It simulates the
scheme and responds to A’s encryption queries. It records all the queries made to H and
terminates the game if a collision is found. Thus,

|Pr[E0]− Pr[E1]| ≤ ε1.

Game 2: In this game, f ′ is replaced by a random function. This transition is akin to a
restricted PRP-PRF switch. Consider f ′ is implemented using lazy sampling: during the
jth query, Tj is first sampled uniformly at random, and if the sampled block has appeared
as an output for any f ′(Vj , ·) call, it is resampled appropriately.

For a query j ∈ [1 . . . qe] to f ′: f ′(Vj , M⋆
j), it always returns a random block unless that

block has appeared for any f ′(Vj , ·) call. Since game 1 would have terminated if a collision
on Vj has occurred, we can assume that if Vj = Vi, then (Nj , Aj , M ′

j) = (Ni, Ai, M ′
i). The

number of candidates for such collision is bounded by (µ− 1). Thus, the probability of
this collision is at most (µ− 1)/2n. We take the union bound over qe queries, we get3

|Pr[E3]− Pr[E4]| ≤ (µ− 1)qe

2n
.

Game 3: B terminates the game if any pair of queries generate the same tag T . Since A
does not repeat queries and the game is not terminated due to a hash collision, the inputs
to the random function must be unique. Thus,

|Pr[E2]− Pr[E3]| ≤
(

qe

2
)

2n
.

Since T is generated using a random function with unique inputs, it is indistinguishable
from random blocks. If T never repeats, then C ′ is also indistinguishable from random
blocks. Thus, Pr[E3] = 0. The overall, bound is given by

ε2 + ε3 + Pr[E3] +
2∑

i=0
|Pr[Ei]− Pr[Ei+1]| ≤ ε1 + ε2 + ε3 + ε4 + (µ− 1)qe

2n
+

(
qe

2
)

2n
.

If the scheme is deterministic (N is set to a constant), then the bound becomes

ε1 + ε2 + ε3 + (2m+1 − 2)qe

2n
+

(
qe

2
)

2n
≤ ε1 + ε2 + ε3 + 2qe

2n−m
+

(
qe

2
)

2n
.

and if m is relatively large, 2qe/2n−m could be significantly higher than
(

qe

2
)
/2n. This is

because any triplet (N, A, M) can be repeated at most 2m+1 − 1 times; the number of
possible values of M⋆. Thus, even though the privacy bound is only up to the birthday
bound in the output size of the PRI, it is still useful to use a nonce. Besides, the output
of the PRI is not just the ciphertext expansion.

7 Conclusion
In this paper, we study the applications of PRIs in building flexible cryptographic modes.
We show how they can be combined with leakage-resilient value comparison to build
leakage-resilient MACs whose security can be adjusted based on the required level of
security and implementation overhead. We also show how to use them to build succinctly

3The restricted PRP-PRF-switching result that is used in the proofs of Theorems 4 and 8 was first
introduced in [IKMP20], to the best of our knowledge.

Mustafa Khairallah 237

committing AEAD from scratch in both the online AE and MRAE settings. scoAE
particularly is an appealing construction as the specification of many existing AEAD
scheme, including Ascon [DEMS21] can be adjusted to match scoAE and become succinctly
committing. We believe such modification of Ascon is interesting and can be a potential
future work.

Acknowledgments
I would like to thank the ToSC 2025 shepherd and reviewers for their valuable comments.
This work is funded by the Wallenberg-NTU Presidential Postdoctoral Fellowship. I would
like to also thank Francesco Berti and Chun Guo for their comments on the issue in
LRMAC1’s interpretation.

References
[ADG+22] Ange Albertini, Thai Duong, Shay Gueron, Stefan Kölbl, Atul Luykx, and

Sophie Schmieg. How to Abuse and Fix Authenticated Encryption Without
Key Commitment. In Kevin R. B. Butler and Kurt Thomas, editors, USENIX
Security Symposium, pages 3291–3308. USENIX Association, 2022.

[BBC+20] Davide Bellizia, Olivier Bronchain, Gaëtan Cassiers, Vincent Grosso, Chun
Guo, Charles Momin, Olivier Pereira, Thomas Peters, and François-Xavier
Standaert. Mode-Level vs. Implementation-Level Physical Security in Symmet-
ric Cryptography - A Practical Guide Through the Leakage-Resistance Jungle.
In Daniele Micciancio and Thomas Ristenpart, editors, CRYPTO I, volume
12170 of Lecture Notes in Computer Science, pages 369–400. Springer, 2020.

[BF18] Manuel Barbosa and Pooya Farshim. Indifferentiable Authenticated Encryption.
In Hovav Shacham and Alexandra Boldyreva, editors, Advances in Cryptology –
CRYPTO 2018, pages 187–220, Cham, 2018. Springer International Publishing.

[BGP+20] Francesco Berti, Chun Guo, Olivier Pereira, Thomas Peters, and François-
Xavier Standaert. TEDT, a Leakage-Resist AEAD Mode for High Phys-
ical Security Applications. IACR Trans. Cryptogr. Hardw. Embed. Syst.,
2020(1):256–320, 2020.

[BGPS21] Francesco Berti, Chun Guo, Thomas Peters, and François-Xavier Standaert.
Efficient Leakage-Resilient MACs Without Idealized Assumptions. In Mehdi
Tibouchi and Huaxiong Wang, editors, ASIACRYPT II, volume 13091 of
Lecture Notes in Computer Science, pages 95–123. Springer, 2021.

[BH22] Mihir Bellare and Viet Tung Hoang. Efficient Schemes for Committing Au-
thenticated Encryption. In Orr Dunkelman and Stefan Dziembowski, editors,
EUROCRYPT II, volume 13276 of Lecture Notes in Computer Science, pages
845–875. Springer, 2022.

[BH24] Mihir Bellare and Viet Tung Hoang. Succinctly-Committing Authenticated
Encryption. Cryptology ePrint Archive, Paper 2024/875, 2024. https://
eprint.iacr.org/2024/875.

[BJK+16] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The SKINNY
family of block ciphers and its low-latency variant MANTIS. In Matthew
Robshaw and Jonathan Katz, editors, Advances in Cryptology - CRYPTO

https://eprint.iacr.org/2024/875
https://eprint.iacr.org/2024/875

238 Revisiting Leakage-Resilient MACs and Succinctly-Committing AEAD

2016 - 36th Annual International Cryptology Conference, Santa Barbara, CA,
USA, August 14-18, 2016, Proceedings, Part II, volume 9815 of Lecture Notes
in Computer Science, pages 123–153. Springer, 2016.

[BLLS22] Jannis Bossert, Eik List, Stefan Lucks, and Sebastian Schmitz. Pholkos -
efficient large-state tweakable block ciphers from the AES round function. In
Steven D. Galbraith, editor, Topics in Cryptology - CT-RSA 2022 - Cryp-
tographers’ Track at the RSA Conference 2022, Virtual Event, March 1-2,
2022, Proceedings, volume 13161 of Lecture Notes in Computer Science, pages
511–536. Springer, 2022.

[BSL24] Francesco Berti, François-Xavier Standaert, and Itamar Levi. Authenticity in
the presence of leakage using a forkcipher. Cryptology ePrint Archive, Paper
2024/1325, 2024.

[CFGI+23] Yu Long Chen, Antonio Flórez-Gutiérrez, Akiko Inoue, Ryoma Ito, Tetsu Iwata,
Kazuhiko Minematsu, Nicky Mouha, Yusuke Naito, Ferdinand Sibleyras, and
Yosuke Todo. Key committing security of aez and more. IACR Transactions
on Symmetric Cryptology, 2023(4):452–488, 2023.

[DEJ+24] Chandranan Dhar, Jordan Ethan, Ravindra Jejurikar, Mustafa Khairallah,
Eik List, and Sougata Mandal. Context-Committing Security of Leveled
Leakage-Resilient AEAD. IACR Transactions on Symmetric Cryptology,
2024(2):348–370, Jun. 2024.

[DEM+17] Christoph Dobraunig, Maria Eichlseder, Stefan Mangard, Florian Mendel, and
Thomas Unterluggauer. ISAP – Towards Side-Channel Secure Authenticated
Encryption. IACR Trans. Symmetric Cryptol., 2017(1):80–105, 2017.

[DEMS21] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer.
Ascon v1.2: Lightweight authenticated encryption and hashing. J. Cryptol.,
34(3):33, 2021.

[DM19] Christoph Dobraunig and Bart Mennink. Leakage resilience of the duplex
construction. In Steven D. Galbraith and Shiho Moriai, editors, Advances
in Cryptology - ASIACRYPT 2019 - 25th International Conference on the
Theory and Application of Cryptology and Information Security, Kobe, Japan,
December 8-12, 2019, Proceedings, Part III, volume 11923 of Lecture Notes in
Computer Science, pages 225–255. Springer, 2019.

[DM21] Christoph Dobraunig and Bart Mennink. Leakage-Resilient Value Comparison
with Application to Message Authentication. In Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques, pages
377–407. Springer, 2021.

[FLPQ13] Pooya Farshim, Benoît Libert, Kenneth G. Paterson, and Elizabeth A. Quaglia.
Robust Encryption, Revisited. In Kaoru Kurosawa and Goichiro Hanaoka,
editors, PKC, volume 7778 of Lecture Notes in Computer Science, pages
352–368. Springer, 2013.

[GIK+21] Chun Guo, Tetsu Iwata, Mustafa Khairallah, Kazuhiko Minematsu, and
Thomas Peyrin. Romulus v1. 3. Submission to NIST Lightweight Cryptography,
2021.

[GLR17] Paul Grubbs, Jiahui Lu, and Thomas Ristenpart. Message Franking via
Committing Authenticated Encryption. In Jonathan Katz and Hovav Shacham,
editors, CRYPTO III, volume 10403 of Lecture Notes in Computer Science,
pages 66–97. Springer, 2017.

Mustafa Khairallah 239

[HKR15] Viet Tung Hoang, Ted Krovetz, and Phillip Rogaway. Robust authenticated-
encryption aez and the problem that it solves. In Elisabeth Oswald and Marc
Fischlin, editors, Advances in Cryptology – EUROCRYPT 2015, pages 15–44,
Berlin, Heidelberg, 2015. Springer Berlin Heidelberg.

[IKMP20] Tetsu Iwata, Mustafa Khairallah, Kazuhiko Minematsu, and Thomas Peyrin.
Duel of the titans: The romulus and remus families of lightweight AEAD
algorithms. IACR Trans. Symmetric Cryptol., 2020(1):43–120, 2020.

[JNPS21] Jérémy Jean, Ivica Nikolic, Thomas Peyrin, and Yannick Seurin. The deoxys
AEAD family. J. Cryptol., 34(3):31, 2021.

[Kha24] Mustafa Khairallah. CCA Security with Short AEAD Tags. IACR Communi-
cations in Cryptology, 1(1), 2024.

[KSW23] Juliane Krämer, Patrick Struck, and Maximiliane Weishäupl. Committing AE
from Sponges: Security Analysis of the NIST LWC Finalists. Cryptology ePrint
Archive, Paper 2023/1525, 2023. https://eprint.iacr.org/2023/1525.

[NSA+23] Motoki Nakahashi, Rentaro Shiba, Ravi Anand, Mostafizar Rahman, Kosei
Sakamoto, Fukang Liu, and Takanori Isobe. Ghidle: Efficient large-state block
ciphers for post-quantum security. In Leonie Simpson and Mir Ali Rezazadeh
Baee, editors, Information Security and Privacy - 28th Australasian Conference,
ACISP 2023, Brisbane, QLD, Australia, July 5-7, 2023, Proceedings, volume
13915 of Lecture Notes in Computer Science, pages 403–430. Springer, 2023.

[NSS24] Yusuke Naito, Yu Sasaki, and Takeshi Sugawara. Committing Wide Encryption
Mode with Minimum Ciphertext Expansion. Cryptology ePrint Archive, Paper
2024/1257, 2024. https://eprint.iacr.org/2024/1257.

[RS06] Phillip Rogaway and Thomas Shrimpton. A Provable-Security Treatment of
the Key-Wrap Problem. In Serge Vaudenay, editor, EUROCRYPT, volume
4004 of Lecture Notes in Computer Science, pages 373–390. Springer, 2006.

[SPS+22] Yaobin Shen, Thomas Peters, François-Xavier Standaert, Gaëtan Cassiers, and
Corentin Verhamme. Triplex: an Efficient and One-Pass Leakage-Resistant
Mode of Operation. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2022(4):135–
162, 2022.

[SW24] Patrick Struck and Maximiliane Weishäupl. Constructing Committing and
Leakage-Resilient Authenticated Encryption. IACR Trans. Symmetric Cryptol.,
2024(1):497–528, 2024.

https://eprint.iacr.org/2023/1525
https://eprint.iacr.org/2024/1257

	Introduction
	Preliminaries
	Pseudo-Random Injections
	Collision Resistance
	strong Unforgaebility with verification Leakage (sUF-L2):
	Instantiations and Practicalities

	A Leakage-Resilient Message Authentication Code
	Collision Resistance
	strong Unforgeability with Leakage

	Succinctly-Committing Online AEAD
	Succinctly-Committing Misuse-Resistant AE
	Conclusion

