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Abstract. Yoroi is a family of space-hard block cipher proposed at TCHES 2021.
This cipher contains two parts, a core part and an AES layer to prevent the blackbox
adversary. At FSE 2023, Todo and Isobe proposed a code-lifting attack to recover the
secret T-box in Yoroi, breaking the security claims of Yoroi. Their work shows that
the AES layer is vulnerable in the whitebox model and has no contribution to the
security in a hybrid of blackbox and whitebox model. Besides, their attack employs a
strong hack model to modify and extract the table entries of the T-box. This hack
model is suitable for the environment used by Yoroi while it is difficult to achieve in
the practical application.
In this paper, we present an attack on Yoroi within a more practical scenario. Com-
pared with the previous attack, our attack is a chosen-plaintext-ciphertext attack in
the blackbox phase and assumes that the whitebox attacker has reduced capabilities,
as one only needs to extract the AES key without modifying or extracting the table
entries. Furthermore, we introduce a family of equivalent representations of Yoroi,
using this we can recover an equivalent cipher without any leaked information of
table entries. As a result, the complexities of our attack remain almost the same as
that of the previous attack.
Keywords: Whitebox cryptography · Space-hard · Cryptanalysis · Yoroi

1 Introduction
Whitebox cryptography aims to protect software implementations of cryptographic al-
gorithms under an untrusted environment, where the attackers have full access to the
implementations, and can perform both static and dynamic analysis, including execution
tracing, fault injection, implementation modification, and more.

In 2002, Chow et al. [CEJvO02a, CEJvO02b] proposed the first whitebox implementa-
tions of AES and DES, the main idea is to convert parts of round operations into lookup
tables embedded with round keys. Each such lookup table by itself does not leak any
information about the secret key. After their pioneering works, many improved whitebox
implementations were proposed [BCD06, LN05, XL09, Kar10]. However, all of them
were broken by a structural attack (called BGE analysis) [BGE04] and its successors
[MRP12, WMGP07, MWP10, LRM+13], where the secret keys are extracted. Recently, a
generic attack called differential computation analysis (DCA) [BHMT16] can apply key
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extraction attack on most existing whitebox implementations under a graybox model,
which can be regarded as a limited whitebox model where the attacker requires neither
knowledge about the lookup tables nor any reverse engineering effort. There are many
following works under such model, just list a few here [BBIJ17, BU18, BU21].

To resist key extraction attacks, another approach involves incorporating well-designed
block ciphers, such as AES, to design dedicated whitebox block ciphers [BBK14]. This
approach reduces key extraction attacks to key recovery attacks of the embedded block
ciphers in the standard blackbox model. For such designs, the primary security goal has
shifted towards countering code lifting, another type of whitebox attack that aims to isolate
the program code in order to copy the functionality of encryption/decryption rather than
extracting the secret key. To mitigate code lifting, Bogdanov and Isobe [BI15] proposed a
security notion of space hardness, which is similar to incompressibility [DLPR13] and weak
whitebox security [BBK14]. It evaluates the security against code lifting by assessing the
size of program a whitebox attacker must extract to maintain the cipher’s functionality.
Block ciphers satisfying space hardness are called space-hard block ciphers, and many have
been proposed [BI15, FKKM16, CCD+17, KLLM20, KSHI20].

Although space-hard block ciphers can provide a sufficient level of security against code
lifting, they still have drawbacks facing on continuous data leakage. This could happen
when an attacker steals small amounts of data from the program over a long period, which
might not be monitored by the system. Eventually, the attacker can extract the entire
program. To address this problem, a space-hard block cipher Yoroi with a new property
called longevity was introduced at TCHES 2021[KI21]. It allows the users to update lookup
tables of Yoroi while keeping the functionality of the encryption/decryption function. Once
a certain period has passed or the amount of data leakage reaches a limit, the tables will
be updated to different ones so that the attacker must restart the process of leaking table
entries from the beginning.

At ToSC 2023, Todo and Isobe [TI22] analyzed Yoroi under a new attack model called
hybrid code lifting attack. This model is a hybrid of blackbox and whitebox model. Firstly,
in the whitebox model, the attacker hacks into the encryption program, analyze and modify
the implementation, and leak arbitrary data bounded by a limited size. Secondly, an
collaborative attacker analyzes the algorithm in the standard blackbox model with the
help of the information received from the whitebox attacker. Todo and Isobe applied this
model to Yoroi. Specifically, they modified the program, and leaked 800-bit and 3008-bit
information in the whitebox model for Yoroi-16 and Yoroi-32, respectively. Then, they
recovered a functionally equivalent implementation based on differential cryptanalysis in
the blackbox model. Last but not least, they also broke the security claim about the
longevity of Yoroi.

1.1 Our Contributions
In this paper, we introduce an equivalent cipher recovery attack against Yoroi. The previous
work in [TI22], which highly relies on the information obtained from the hack-model, is
usually difficult to achieve in practice. Our attack only requires a whitebox ability to
extract the key of the AES layer in Yoroi. The remaining processes are fully operated
under the blackbox model. Compared with the previous work, we significantly weaken the
capabilities of the whitebox attacker while introducing only a small amount of additional
complexity. We consider our attack is more suitable in the practical environment of Yoroi
and should be given priority consideration when this family of cipher is used. Detailed
contributions are shown as follows.

Equivalent Representation of Yoroi. We analyze the linear layer of Yoroi and find that
we can add a permutation before the linear layer and a corresponding permutation after
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the linear layer to keep the function of the linear layer unchanged. This property enables
us to reduce the computation complexity during our attack process by approximately 27.9.

Break the Security Claim of Yoroi with Less Leakage. In the attack model by Todo and
Isobe, they assume an attacker hacks into the encryption program who can freely read the
table entries and modify the encryption program. Considering that such capabilities of an
attacker would be excessively powerful and difficult to implement, we present a new attack
based on the attack model of Todo et al., where the whitebox attacker does not transmit
any information about the table entries, nor does she modify the original program, but
only transmits the key of AES layer. The collaborative blackbox attacker can recover an
equivalent algorithm faster than exhaustive search attacks. Our results on Yoroi-16 and
Yoroi-32 are shown in Table 1.
Table 1: Comparison of attacks on Yoroi. CP and CPC separately denote that the data is
collected in the chosen-plaintext and chosen-plaintext-ciphertext settings.

Target Code-lifting phase Blackbox phase Referencetime leaked data (bits) time data

Yoroi-16
218.8 800 233.09 233.09CP [TI22]

- 128 234.22 233.10CPC Section 5
- 128 269.88 269.88CP Appendix C

Yoroi-32
235.9 3008 265.44 265.44CP [TI22]

- 128 265.45 265.45CPC Section 5
- 128 288.76 288.76CP Appendix C

1.2 Organizations
In Section 2, we introduce the block cipher Yoroi. Section 3 introduces the hybrid code
lifting attack on Yoroi. A new set of equivalent representations is given in Section 4.
Section 5 introduces our hybrid attacks on Yoroi, utilizing only the leakage of the AES
key. The experiments that verify the correctness of the theories used in our attacks are
presented in Section 6. Besides, all the codes used in the verified experiments are available
at the following repository: https://github.com/attackYoroi/attackyoroi.

2 Space-Hard Block Cipher: Yoroi
2.1 Space-Hard Block Cipher
2.1.1 Code Lifting

The security requirements of whitebox cryptography can be classified into key extraction
security and code lifting security. The code lifting considers the attacker extracts the
program code to copy the functionality of encryption/decryption instead of the secret key.

Code lifting attacks are mostly defined under the whitebox model, but it can also be
extended to the blackbox model. We generalize the definition as follows. In some aspects,
it is also referred to as global deduction by Lars Knudsen [KR11].
Definition 1 (Function extraction). A function extraction attack is an attacker’s attempt
to recover the original or a functionally equivalent scheme of the targeted encryption
program.

In this paper, we refer to code lifting as a type of function extraction attack that
involves accessing and modifying the program in the whitebox model.

https://github.com/attackYoroi/attackyoroi
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2.1.2 Space Hardness

Bogdanov et al. introduced the notion of space hardness in [BIT16] to mitigate code lifting
attack. It evaluates the difficulty of compressing a cipher’s whitebox implementation and
quantifies the security against code lifting by measuring the amount of code a whitebox
attacker must extract to preserve the functionality of the cipher.

Definition 2. ((M,Z)-space hardness[BI15]). A block cipher is (M,Z)-space-hard means
attackers can not correctly encrypt (decrypt) a random message with probability greater
than 2−Z if the size of code they get is less than M.

Even if a part of the program code is leaked, the block cipher remains secure when the
space hardness is guaranteed. We call such a cipher space-hard block cipher. For example,
for a (size(T )/4, 128)-space-hard block cipher, the attacker can not encrypt (decrypt) any
plaintext (ciphertext) correctly with probability greater than 2−128 if the size of program
code leaked is less than size(T )/4, where size(T ) denotes the program size.

Bogdanov et al. [BIT16] introduced three adversary models of space hardness. In this
paper we only focus on the known-space attack, which is related to our attack.

Definition 3 (Known-Space Attack (KSA)). The adversary extracts M pairs of inputs
and the corresponding outputs of tables (xi, F (xi)) for i ∈ {1, 2, · · · , M}, where xi cannot
be chosen by the adversary.

2.2 Yoroi: Updatable Block Cipher
Yoroi is an updatable space-hard block cipher that was introduced at TCHES 2021 [KI21].
The tables in the whitebox implementation of Yoroi can be updated while preserving the
same functionality of the block cipher.

2.2.1 Notations and Specification

Yoroi is an SPN cipher with n-bit block and k-bit secret key. The internal state Xr in the
r-th round consists of ℓ elements of nin bits Xr = {xr

0, · · · , xr
ℓ−1}, where r ∈ {1, · · · , R},

xi ∈ Fnin
2 and nin × ℓ = n. Each element xi is divided into the top m bits xL

i = msbm(xi)
and the last t bits xR

i = lsbt(xi) such that xi = xL
i ||xR

i , where m + t = nin and msbm

(lsbm) denotes the most significant (least significant) m bits of the element.
Let P ∈ (Fnin

2 )ℓ be a plaintext and the corresponding ciphertext C ∈ (Fnin
2 )ℓ is

computed as C = A ◦ γR◦ (⃝R−1
i=1 (θ ◦ σi ◦ γi))(P ). A is a full-round AES. We call γR◦

(⃝R−1
i=1 (θ ◦ σi ◦ γi)) the Yoroi-core part, consisting of R rounds. Each round is defined as

follows.

S-Layer γr. The S-layer γr :(Fnin
2 )ℓ → (Fnin

2 )ℓ consists of ℓ key-dependent nin-bit
bijective functions. S1 and S3 are used for the first and last rounds, respectively, while S2
is used for the other rounds:

γr: (x0, · · · , xℓ−1) → (Sj(x0), · · · , Sj(xℓ−1)),

where j = 1 for r = 1, j = 3 for r = R, and j = 2 for the rest r.

Linear Layer θ. The linear layer θ: (Fnin
2 )ℓ → (Fnin

2 )ℓ consists of an ℓ × ℓ MDS matrix
Mt over Ft

2, which is applied to the part of the state. Specifically, Mt takes the least
significant t bits of each nin-bit element as inputs.

θ : (x0, · · · , xℓ−1) → (xL
0 ||x′R

0 , · · · , xL
ℓ−1||x′R

ℓ−1),

where (x′R
0 , · · · , x′R

ℓ−1)T = Mt · (xR
0 , · · · , xR

ℓ−1)T .
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Affine Layer σr. In the affine layer σr: (Fnin
2 )ℓ → (Fnin

2 )ℓ, t-bit constants Ci(0 ≤ Ci ≤
2t − 1) are added to each element of the state in r-th round.

σr : (x0, · · · , xℓ−1) → (x0 ⊕ Cr, · · · , xℓ−1 ⊕ Cr),

where Cr = r.

AES Layer A. Finally, a full-round AES A with a fixed key KA is applied. KA is
generated independently of the keys used in S-layers.

2.2.2 Whitebox Implementation and Longevity

The whitebox implementation of Yoroi has an additional m-bit block cipher E, which is
used to update the bijective functions S1, S2 and S3:

T1 = (E||I) ◦ S1, T2 = (E||I) ◦ S2 ◦ (E−1||I), T3 = S1 ◦ (E−1||I),

E is applied to xL, i.e., (E||I)(x) = E(xL)||xR. The whitebox implementation of Yoroi
keeps the same functionality since the influence of E and E−1 can be neutralized between
the bijective functions. This feature that maintaining the functionality even the tables are
updated is called longevity.

The intention behind this design is to ensure the security even if partial table entries
are leaked. By updating T1, T2 and T3, the information leaked to attackers will be changed,
and thus, massive leakage is accepted.

2.2.3 Parameters and Claimed Security

Yoroi has two versions: Yoroi-16 and Yoroi-32 adopt key-dependent 16- and 32-bit tables
(bijective functions), respectively. Both of them are 128-bit block ciphers.

• Yoroi-16: n = 128, ℓ = 8, nin = 16, m = 12, t = 4, R = 8, Sj(x) : {0, 1}16 → {0, 1}16,

• Yoroi-32: n = 128, ℓ = 4, nin = 32, m = 28, t = 4, R = 16, Sj(x) : {0, 1}32 → {0, 1}32.

The following are the designer’s security claims, where the space hardness is mainly focused
on KSA model.

• Resist all attacks in the blackbox model.

• Secure against key extraction in the whitebox model.

• ((3 × 2nin)/4, 128)-space hardness against KSA.

• ((3 × 2nin)/64, 128)-space hardness against KSA every table update.

For example, Yoroi-16 ensures that an attacker can not correctly encrypt (decrypt) a
random message with probability higher than 2−128 given less than 3×214 table entries.
For longevity, the attack is still impossible even if 3 × 210 table entries are leaked for every
updated table.

3 Hybrid Code Lifting and Application to Yoroi
In this section, we introduce the concept of hybrid code lifting and present the corresponding
attacks on Yoroi by Todo and Isobe.
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3.1 Hybrid Code Lifting
The blackbox model assumes that the attacker can access the inputs and the outputs of a
cipher. In contrast, the whitebox model assumes that the attacker has full control over the
execution environment of a cipher, allowing him to access and modify the implementation.
In practice, these two models can be combined to analyze a whitebox block cipher.

When the concept of space hardness was first introduced, it did not assume a blackbox
attacker receiving the leakage. However, Todo and Isobe argue that considering a blackbox
attacker is necessary to fulfill the intent of the secure leakage-resilient system and emphasize
the necessity of hybrid code lifting in their paper [TI22]:

“If we do not need to consider a blackbox attacker after the leakage, the use
case of the space-hard block cipher is limited.”

They propose a hybrid model of blackbox and whitebox for code lifting attack [TI22],
named hybrid code lifting, which breaks the security claim of Yoroi.

Definition 4 (Hybrid code lifting). The attack model consists of two phases: the first
phase being the code lifting phase and the second phase being the blackbox phase. In the
first phase, the whitebox attacker hacks into the encryption program, and can read and
modify the whole table entries. The amount of leakage and the time complexity of this
phase are bounded. In the second phase, the blackbox attacker receives the leakage in the
first phase and then analyzes the encryption by making queries in the blackbox model.
Similarly, the data and time complexities are bounded.

3.2 Hybrid Code Lifting on Yoroi by Todo and Isobe
At FSE 2023, Todo and Isobe [TI22] proposed function extraction attacks on Yoroi under
the hybrid code lifting model. They first extract table entries in the whitebox model, and
then use the additional information to conduct function extraction in the blackbox model.

They introduced a canonical representation of Yoroi, which applies additional m-bit
permutations to the three tables T1, T2 and T3. The representation is shown in Figure 1.
Specifically, the tables used in each round are updated as follows:

T̃1 =(E1||I) ◦ T1,

T̃r =(Er||I) ◦ T2 ◦ (Dr−1||I), for r ∈ {2, 3, ..., R − 1},

T̃R =T3 ◦ (DR−1||I).

Note that Dr = E−1
r , thus the canonical representation maintains its functionality no

matter what Er is selected.
They exploited the freedom of Er to construct tables T̃r for r ∈ {1, · · · , R − 1} that

satisfy Property 1, and proved that such tables are uniquely determined by S1, S2 and S3.
We omit the searching procedure and proof here and refer readers to their original paper
for details.

Property 1. When lsbt(T̃r(y1)) = lsbt(T̃r(y2)) = 0, msbm(T̃r(y1)) < msbm(T̃r(y2)) holds
for all y1 < y2.

The attack consists of two phases. We firstly clarify some notations based on canonical
representation.

• ρ ∈ (Fm
2 )2t : 2t-dimensional vector whose elements take a value over Fm

2 .

• Ai := {x ∈ Fnin
2 |lsbt(T̃r(x)) = i}. We use Aρi

when ρ has not been recovered yet.

• η ∈ (Ft
2)2m : 2m-dimensional vector whose elements take a value over Ft

2.
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Figure 1: Canonical representation of Yoroi

• Bj := {x ∈ Fnin
2 |msbm(T̃r(x)) = j}. We use Bηj

when η has not been recovered yet.

• xj,i ∈ Fnin
2 : input of T̃r(x) such that T̃r(xj,i) = j||i.

Since T̃r is a permutation, there are 2t distinct Ai of size 2m, and similarly 2m different
Bj of size 2t.

3.2.1 The Code Lifting Phase

In this phase, the whitebox attacker extracts information of the program and leaks it to
the blackbox attacker in the second phase.

The whitebox attacker first extracts the AES key, which is assumed to be an easy task
since the designer of Yoroi employs AES only for blackbox security. Then, the attacker
modifies the tables in the program to generate T̃r for r ∈ {1, · · · , R} of the canonical
representation. Finally, the attacker leaks all elements in B0 of T̃r for r ∈ {1, 2, · · · , R − 1}.

In summary, the leakage size is 128 + (R − 1) × 2t × nin bits, which are 1920 and 7808
bits for Yoroi-16 and Yoroi-32, respectively. These leakage amounts are significantly smaller
than the safety bounds claimed by the designers of Yoroi.

3.2.2 The Blackbox Phase

The blackbox attacker receives the leakage from the whitebox attacker, and launches
differential attack in this phase.

Step 1. In this step, Ai is recovered. We first show a truncated differential of the Yoroi-
core part in Figure 2, which is constructed by the fact that the linear layer is only applied
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to the last t bits of the output of T̃r. The attacker uses this differential distinguisher to
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Figure 2: Truncated differential trail of Yoroi-core part. ∆ represent non-zero difference.

categorize the input space of T̃1 based on whether the lower t bits of the output from T̃1
are the same. The procedure is as follows.

1. Prepare a structure of 2nin plaintexts by taking all values in the first element and
constant for the others.

2. Store all the corresponding ciphetexts in a hash table indexed by the lsbnin(l−1) bits.
Collect the corresponding plaintext pair (P1, P2) of each ciphertext collision.

The probability of the truncated differential is 2−t(R−1), thus each collected pair (P1, P2)
very likely conform to the truncated differential, which means lsbt(T̃1(P1[0])⊕T̃1(P2[0])) = 0,
i.e., P1[0] and P2[0] belong to the same subset A.

Continuously repeat the above procedure, merging collections where the intersection of
the collected sets is non-empty. Each procedure requires 2nin times, data, and memory
complexities. Todo et al. utilized graph connectivity [ER59] for analysis, concluding
that the procedure has to be repeated 215.52 and 232.45 times for Yoroi-16 and Yoroi-32,
respectively, to divide Fnin

2 into Aρi with a success probability of 50%.
After that, they determined the specific values of ρi using the information of B0 that

was leaked by the whitebox attacker. Specifically, the attacker checks whether the subset
Aρi includes x0,j , where x0,j ∈ B0. If so, they have ρi = j.

Step 2. In this step, Bηj
is recovered. We do not need to know η as it can be complemented

from A0. We use another truncated differential shown in Figure 3, where the differences
{ζ1, · · · , ζℓ} are uniquely determined by β according to the MDS matrix Mt, where β is
chosen by the attacker. Based on the knowledge of Ai from step 1 and B0 from the leakage,
we are able to prepare a plaintext pair (P1, P2) that conforms to the first round differential
in Figure 3 with probability 2−m. The attack procedure is as follows.
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1. Compute (ζ1, ζ2, ..., ζℓ) from a non-zero β ∈ Ft
2.

2. Construct a set of 22m plaintexts. Each plaintext P1 = (P1[1], P1[2], · · · , P1[ℓ]) has
the following form: P1[1] iterates through the elements in Ai1 , where i1 denotes a
random element over Ft

2. P1[2] iterates through the elements in A0. For the rest P1[l],
the attacker randomly chooses the element x0,il

from B0. Obtain the corresponding
ciphertexts by using the encryption oracle.

3. Construct another set of 22m plaintexts. Each plaintext P2 = (P2[1], P2[2], · · · , P2[ℓ])
has the following form: P2[1] iterates through the elements in Ai1⊕ζ1 , P2[2] iterates
through the elements in Aζ2 . For the rest P2[l], the attacker chooses the element
x0,il⊕ζl

from B0 such that T̃1(x0,il
) ⊕ T̃1(P2[l]) = (0||ζl). Obtain the corresponding

ciphertexts by using the encryption oracle.

4. Collect pairs (P1[2], P2[2]) satisfying lsbnin(ℓ−1)(C1 ⊕ C2) = 0, where C1 and C2
denote the ciphertexts of P1 and P2, respectively.

Continuously iterate the above procedure, with the time, data, and memory complexity
required for each iteration being 22m+1. In the second branch, there are (2t −1)×2m ≈ 2nin

different pairs (P1[2], P2[2]) satisfying msbm(T̃1(P1[2])) = msbm(T̃1(P2[2])) that need to
be detected. To reduce the probability of each pair not being detected to 2−nin , Todo and
Isobe estimate that 12 and 23 iterations are required for Yoroi-16 and Yoroi-32, respectively.
Finally, in Yoroi-16, the total complexity is 232.49, and in Yoroi-32, the total complexity is
264.43.

At this point, the attacker has obtained Ai for all i ∈ Ft
2 and Bηj

for all ηj ∈ Fm
2 . Since

T̃1 satisfies Property 1, ηj can be recovered, and thus T̃1 is recovered. The attacker can
bypass the first round, and use the same procedure to recover T̃2, · · · , T̃R−1. Furthermore,
if the attacker has already recovered T̃1, · · · , T̃R−1, recovering T̃R is straightforward.
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Figure 3: The truncated differential trail of Yoroi-core part used to recover Bηj .

4 Equivalent Representations of Yoroi
In this section, we introduce a set of equivalent representations of Yoroi.

Definition 5 (Equivalent mappings for a matrix). We define that two mappings FI , FO :
(Fn

2 )p 7→ (Fn
2 )p are equivalent for a p × p matrix M over Fn

2 , if

M · x = FO ◦ M · FI(x), ∀x ∈ (Fn
2 )p.
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Lemma 1. For any affine mapping AI : (Fn
2 )p 7→ (Fn

2 )p, where AI(x) = a · x + b̃,
b̃ = (b, b, · · · , b) for b ∈ Fn

2 , we can always find an equivalent affine mapping AO : (Fn
2 )p 7→

(Fn
2 )p, where AO(x) = c · x + d̃, d̃ = (d, d, · · · , d) for d ∈ Fn

2 , for a p × p cyclic matrix M
over Fn

2 .

Proof. Since matrix M is over a finite field, it satisfies commutativity with scalars. There-
fore, AI and AO being equivalent for M means

M · x = AO ◦ M · AI(x)
= AO(Ma · x + M · b̃)
= AO(aM · x + M · b̃),

we can easily derive that AO(x) = a−1(x + M · b̃) = a−1x + a−1M · b̃, thus obtain
c = a−1 and d̃ = a−1M · b. Since the matrix M is a cyclic matrix, each element
d̃[i] = a−1b

∑p−1
j=0 Mi,j is a constant value, which means d = a−1b

∑p−1
j=0 Mi,j .

Recall that the linear layer θ of Yoroi applies an ℓ × ℓ MDS matrix to a part of the
internal state in each round: (x′R

0 , · · · , x′R
ℓ−1)T = Mt · (xR

0 , · · · , xR
ℓ−1)T , we can add some

specific affine mappings before and after the matrix multiplication, while the output
remains the same as before according to Lemma 1.

Lemma 2. For the t-bit constant addition in the affine layer and the multiplication of the
matrix Mt in the linear layer of Yoroi, we can define a set of affine mappings {AI

i , AO
i } :

(Ft
2)ℓ 7→ (Ft

2)ℓ, such that Mt · (c + x) = AO ◦ Mt · (c + AI(x)), and AI
i = LI

i ||LI
i · · · ||LI

i

and AO
i = LO

i ||LO
i · · · ||LO

i , where LI
i and LO

i are affine mappings : Ft
2 7→ Ft

2.

Proof. Since the affine layer adds the same t-bit constant in the lsbt bits of each element
of the state, that is, c = {c, c, · · · , c} ∈ (Ft

2)ℓ. It can be regarded as a part of the AI
i such

that AI
i = ax + b̃′ where b̃′ = b̃ + c. The rest proof is similar to Lemma 1.

Based on Lemma 2, we propose an equivalent representation of Yoroi below, and the
representation is shown in Figure 4.

Theorem 1. We can construct an equivalent representation of Yoroi by updating the T -box
in each round as follows:

T̂1 = (E1||LI
1) ◦ T1, r = 1,

T̂r = (Er||LI
r) ◦ T2 ◦ (E−1

r−1||LO
r−1), 2 ≤ r ≤ R − 1,

T̂n = T3 ◦ (E−1
n−1||LO

n−1), r = R,

where Ei is an m-bit arbitrary permutation, LI
i and LO

i are chosen according to Lemma 2.

Proof. When two boxes T̂i and T̂i+1 meet in the encryption process, the application of
the layer (Ei||LI

i ) after T̂i can be canceled out by applying (E−1
i ||LO

i ) before T̂i+1. This
can be easily derived for the left part. For the right part, LI

i and LO
i are determined by

Lemma 2, thus the applications of LI
i and LO

i will also be canceled out. Therefore, the
new representation will keep the input of each T -box inside the T̂ -box same as that of the
T -box in the original Yoroi, thus it has the same functionality as Yoroi.

We introduce the following notations in our attacks in the first round for better
explanation1:

1The other rounds can use similar notations when the previous rounds are broken, so that the added
layer before the T -box can be removed.
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Figure 4: An equivalent representation of Yoroi.

• L := {L(x) = ax + b for x ∈ Ft
2 | a, b ∈ Ft

2 and a ≠ 0}. The size of the set is
2t(2t − 1).

• FA : Fnin
2 7→ Ft

2. FA(x) = ρi, when x ∈ Aρi .

• F̂A : Fnin
2 7→ Ft

2. F̂A(x) = LI
1 ◦ FA(x) = LI

1(ρi), when x ∈ Aρi .

• FB : Fnin
2 7→ Fm

2 . FB(x) = ηj , when x ∈ Bηj
.

• F̂B : Fnin
2 7→ Fm

2 . F̂B(x) = E1(ηj), when x ∈ Bηj
.

Recall the previous attack against Yoroi in Section 3.2. When Fnin
2 is divided into the

subsets Aρi
and Bηj

separately, the attacker has to determine the values of ρi and ηj based
on the knowledge of the leakage. Since the canonical representation is unique, the attacker
needs to recover the unique FA(x) and FB(x). However, it is not the case for our attack as
there are many equivalent representations of Yoroi.

Corollary 1. For the equivalent representation of Yoroi, there are 2t(2t − 1) choices of
F̂A(x).

Proof. Note that F̂A(x) = LI
r ◦ FA(x). Since there is only one correct function FA(x) and

LI
r ∈ L, we can derive 2t(2t − 1) choices of F̂A(x).

Corollary 2. For the equivalent representation of Yoroi, the F̂B(x) has 2m! choices.

Proof. Since Er is a random m-bit permutation, and note that the function msbm(Tr(x))
is unique and F̂B(x) = Er ◦ msbm(Tr(x)), we have 2m! choices of F̂B(x).
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Once a correct F̂A(x) and F̂B(x) are recovered, we can recover the corresponding T̂ -box.
Our attack in the following section is a function extraction attack to recover a set of
T̂i-boxes {T̂1, · · · , T̂R}.

5 Attacks Against Yoroi
In this section, we provide a hybrid code lifting attack on Yoroi, which requires less leakage
from the white-box attacker who has limited capabilities.

5.1 The Code Lifting Phase
In this phase, the whitebox attacker only has to extract the AES key and transmit it to
the blackbox attacker. The leakage size is only 128 bits, and the time complexity can be
omitted.

As comparison, the pioneering hybrid code lifting attack [TI22] proposed by Todo and
Isobe assumes that the whitebox attacker can freely read the table entries of Yoroi and
perform arbitrary computations on it. Besides, the leakage size of their attacks is 800 and
3008 bits for Yoroi-16 and Yoroi-32, respectively.

5.2 The Blackbox Phase
The remaining process of the attacks is conducted under the blackbox model, targeting
Yoroi without the last AES layer. The goal is to recover one of the equivalent representations
of Yoroi.

5.2.1 Process of Recovering F̂A

Step 1: Divide the Subspace. The first step is to divide the input space of T1 into
2t subsets {Aρ0 , · · · ,Aρ2t−1

} by the same way as explained in Step 1 in Section 3.2.2.
However, without the leaked information of B0, the value of ρi can not be recovered as
before.

As demonstrated in Corollary 1, there are 2t(2t − 1) choices of F̂A(x), which means the
sequence of indexes (ρ0, · · · , ρ2t−1) has 2t(2t − 1) choices. Each of them can be obtained
by applying an affine mapping, which is also a permutation, to another one. Our strategy
is first assigning a random value to the index sequence, say ρi = i, and then exhausting
the t-bit permutation π such that the sequence turns to (π(ρ0), · · · , π(ρ2t−1)) after the
permutation. The goal is to find one permutation such that the resulting sequence is one
of the 2t(2t − 1) candidates.

In the following, we show that the search space of the t-bit permutation can be reduced
to (2t − 2)! in our attack.

Definition 6. Two t-bit permutations π1 and π2 are affine equivalent if there exists an
affine mapping L ∈ L satisfying π1 = L ◦ π2. Those permutations that are mutually affine
equivalent form an affine equivalence class.

The size of each affine equivalence class is 2t(2t − 1) due to the size of L. Hence, there
are 2t!/(2t(2t −1)) = (2t −2)! affine equivalence classes for t-bit permutations. Particularly,
we observe that there is a representative for each affine equivalence class. This observation
is crucial as it allows us to reduce the complexity of the attack by focusing on a smaller
set of representatives rather than considering all possibilities within each class.

Observation 1. Each permutation π such that π(0) = 0 and π(1) = 1 is a representative
of an affine equivalence class.
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The proof is simple. Assume that two different such permutations π1 and π2 belong to
the same affine equivalence class, then there is an affine mapping L(x) = ax + b such that
π1 = L ◦ π2. From

π1(0) = aπ2(0) + b = 0,

π1(1) = aπ2(1) + b = 1,

we obtain a = 1 and b = 0, which means π1 and π2 are identical, contradicting the
assumption.
Complexity. The complexity of this step matches that of the step described in Section 3.2.2.

Step 2: Recover the Correct Permutation. In this step, one of the correct permutations
is recovered. Note that we have assigned ρi = i in the first step. We use the truncated
differential trail in Figure 5, where β is a non-zero difference. We first make queries
expecting some ciphertext pairs satisfying the differential trail from bottom to up, then
identify such pairs using so-called extended plaintexts, finally recover the permutation. The
details are as follows.

1. Prepare a ciphertext structure of size 2s(s ≤ nin) that only activates the most
significant nin bits, out of which 22s−1 pairs can be constructed. Ask for the
corresponding plaintexts. We refer to these texts as original plaintexts/ciphertexts.

2. For each original plaintext, construct its set of extended plaintexts: change the most
significant nin bits, ensuring the least significant t bits of the output of the first
T̂ -box unchanged by checking the subsets of Aρi

. The size of the extended set is 2m.

3. For all the 2m × 2s plaintexts, ask for their ciphertexts. We call it a correct pair if it
meets the conditions: its two ciphertexts collide in the least significant ((ℓ − 1) × nin)
bits and at least one of the plaintexts is an extended one.

If a ciphertext pair conforms to the differential trail, the plaintext pairs that are built
from the two corresponding extended plaintext sets will satisfy the output difference of the
first round in the differential trail. Thus, these plaintext pairs will satisfy the output of the
distinguisher with probability 2−t×(R−2), while the probability is 2−(ℓ−1)×nin otherwise.

4. For each correct pair (P1, P2), apply a t-bit permutation π to FA and check whether
the following truncated difference is satisfied:

Mt · (π(FA(P1[1]) ⊕ FA(P2[1])), · · · , π(FA(P1[ℓ]) ⊕ FA(P2[ℓ])))T = (∆, 0, · · · , 0)T . (1)

Since a correct pair must satisfy

Mt · (lsbt(T1(P1[1]) ⊕ T1(P2[1])), · · · , lsbt(T1(P1[ℓ]) ⊕ T1(P2[ℓ])))T = (∆, 0, · · · , 0)T

and the affine mapping in the correct choice of F̂A(x) ensures that the difference in the
last (ℓ − 1) × nin bits remains 0, the permutation π that satisfies the condition is very
likely to be the correct permutation. If the condition is not met, we discard this candidate
of permutation.

Using several correct pairs, the correct permutation will be recovered, and F̂A is
accordingly determined.
Complexity. This step is an additional process compared to the attack by Todo and Isobe
described in Section 3.2. The complexity is analyzed later in Section 5.3.
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Figure 5: The truncated differential of Yoroi-core part used to recover F̂A.

5.2.2 Process of Recovering F̂B

According to Corollary 2, dividing the input space of the T-box into 2m subsets Bηj
is

enough to recover the equivalent representation of Yoroi. Recall the procedure of step 2
in Section 3.2.2, using the leakage of B0, the attacker constructs input pairs of the last
(ℓ − 2) T-boxes to make sure that the output of the first round only activates in the most
significant nin bits, as illustrated in Figure 3.

In the previous steps, we have recovered F̂A and obtained some correct pairs. We can
use them to construct plaintext pairs achieving the same result. The details are as follows.

1. For each correct pair (P1, P2), we first compute ζ1 = F̂A(P1[1]) ⊕ F̂A(P2[1]) and
ζ2 = F̂A(P1[2]) ⊕ F̂A(P2[2]).

2. Prepare a set {P} with 22m plaintexts from P1 such that the first element satisfies
F̂A(P [1]) = i1 and the second element satisfies F̂A(P [2]) = i2 for fixed i1 and i2,
while the last (ℓ − 2) elements keep the same with P1. Similarly, construct another
set {P ′} from P2 such that the first element satisfies F̂A(P ′[1]) = i1 ⊕ ζ1 and the
second element satisfies F̂A(P ′[2]) = i2 ⊕ ζ2 for the same i1 and i2, while the other
elements keep the same with P2.

3. Collect pairs (P [2], P ′[2]) satisfying lsbnin(ℓ−1)(C ⊕ C ′) = 0.

The above procedure checks all pairs (P [2], P ′[2]) for a fixed ζ2. We should try all
ζ2( ̸= 0). However, ζ2 is fixed for each correct pair. We cannot freely choose its value. As
a solution, we can repeat the above procedure for the same correct pair by constructing
the plaintext sets on other elements. For Yoroi-16, the set of differences {ζ2, ..., ζℓ} for a
correct pair can form a base of the finite field F4

2, while for Yoroi-32, two such distinct sets
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are needed to form the base, which can be verified in Appendix B. Base on Observation 2,
for Yoroi-16, only 1 correct pair is required, while for Yoroi-32 2 correct pairs are required.

In order to divide the input space of the T-box into 2m subsets Bηj
, we need to

repeat the procedure (steps 1-3) 12 and 23 times for Yoroi-16 and Yoroi-32, respectively, as
explained in Section 3.2.2. To do so, we can traverse the values of i1 and i2, and we can
also swap one element of the correct pair, i.e. P1[i] and P2[i], to generate another pair
that has the same output difference at the first round.
Complexity. The complexity of this step is the same as that of recovering Bηj

in Section 3.2.2.
We have recovered all the F̂A and F̂B, thus we can recover T̂1. We can remove the first

round of the equivalent representation of Yoroi, and the tables in the remaining rounds
can be recovered similarly with less complexity.

Observation 2. Consider several isolated points ei, i ∈ Ft
2 and we can connect the point

ei with ei⊕δ if we obtain the difference δ. Then we can connect all the 2t points after
knowing t differences such that the t differences are a set of bases of finite field Ft

2.

5.3 Complexity and Success Rate
In this section, we analyze the extra complexity required in our attack compared to [TI22]
and the success rate. The extra complexity comes from the process of finding correct pairs
and recovering correct permutation in step 2 in Section 5.2.1.

Extra Data Complexity. The probability that one correct pair can be detected is Pr =
1 − (1 − 2−t(R−2))22m . Due to the fact that 2t(R−2) = 22m for both Yoroi-16 and Yoroi-32,
we have Pr ≈ 1 − e−1. We expect 22s−1 × 2−t×(R−2) × 15

16 correct pairs for 2s ciphertexts,
and the number of correct pairs that can be detected is 22s−1 × 2−t×(R−2) × 15

16 × Pr.
Thus, in order to have Nc correct pairs, the required number of original ciphertexts can be
determined by the equation

22s−1 × 2−t×(R−2) × 15
16 × Pr = Nc,

and the data complexity is

2s × 2m =

√
Nc × 2t(R−2) × 32

Pr × 15 × 2m.

Extra Time Complexity. We measure a single operation on the candidate permutations,
specifically checking whether each permutation satisfies Equation (1), as one T-box
operation. This is a reasonable measurement as each permutation is only 4 bits, which is
smaller than the T-box. Considering the fact that each correct pair will exclude a large
number of permutation candidates, the process for the first correct pair should dominate
the time complexity. Our experiments revealed that for Yoroi-16, a single correct choice
would typically recommend approximately 213.15 candidate permutations on average. For
Yoroi-32, this number increases to approximately 224.74. We refer to Appendix A for the
analysis of how many candidate permutations a correct pair can recommend.

Since there are (2t − 2)! candidate permutations, the time complexity for recovering
permutation is (2t − 2)! × ℓ T-box operations. Since Yoroi has (ℓ × R) T-box operations,
the corresponding time complexity is equivalent to (2t−2)!

R Yoroi encryptions.
Therefore, the extra time complexity is√

Nc × 2t(R−2) × 32
Pr × 15 × 2m + (2t − 2)!

R

 Yoroi encryptions.
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Success Rate Analysis. Assume that each correct pair will recommend Rpw
wrong

permutations and the total number of wrong permutations is Npw
. On average, the

probability that a correct pair recommends a wrong permutation is Rpw
/Npw

. If we
set a counter for each permutation, incrementing it by 1 each time a permutation is
recommended, the value of a counter follows a binomial distribution. When Nc correct
pairs are used, and all the counters corresponding to the incorrect permutations are less
than Nc, the correct permutation can be successfully recovered. The success rate is given
by

Ps = (1 − pB(Nc,
Rpw

Npw

, Nc))Npw , (2)

where pB(n, p, k) denotes the probability that a random variable is equal to k when it
follows a binomial distribution B(n, p).

5.4 Application to Yoroi
5.4.1 Application to Yoroi-16

Our experiments showed that Rpw
≈ 213.15 for Yoroi-16. According to the Equation (2),

two correct pairs can increase the success rate to over 90%. Considering the correlation
among candidate permutations, we set Nc = 4 to ensure the correct permutation can be
recovered. Consequently, the extra data complexity is

√
4×224×32

(1−e−1)×15 × 212 = 225.88. The
extra time complexity is 225.88 + (24 − 2)!/8 = 233.35.

In summary, for the whole attack, the data complexity is 233.09 + 225.88 = 233.10, and
the time complexity is 233.09 + 233.35 = 234.22.

5.4.2 Application to Yoroi-32

Our experiments showed that that Rpw
≈ 224.74 for Yoroi-32. According to the Equation (2),

four correct pairs can increase the success rate to over 90%. Considering the correlation
among candidate permutations, we set Nc = 8 to ensure the correct permutation can be
recovered. Consequently, the extra data complexity is

√
8×256×32

(1−e−1)×15 × 228 = 258.38. The
extra time complexity is 258.38 + (24 − 2)!/16 = 258.38.

In summary, for the whole attack, the data complexity is 265.44 + 258.38 = 265.45, and
the time complexity is 265.44 + 258.38 = 265.45.

Remark 1. According to the previous analysis, we need to construct a ciphertext structure
of size about 230. Next, we decrypt the ciphertexts, extend the corresponding plaintexts,
and encrypt these plaintexts. Finally, we perform pairing on the ciphertexts to check
if their differences are active only in the first 32 bits. However, for Yoroi-32, we tested
about 2115 pairs, and found that the random probability is 2−96, which means there is a
significant noise in the correct pairs collected. We need to use the techniques introduced in
Section 5.2.2 that swapping the input at a certain T-box of the collected pairs. The new
extended plaintexts can also be obtained from the swapped pairs. Thus, the candidates of
correct pair can be further filtered. The complexity introduced by this process is negligible.

Remark 2. It is worth mentioning that our blackbox phase is under the chosen-plaintext-
ciphertext setting while the one used in the previous work [TI22] is a chosen-plaintext
attack. To have a better comparison, we also devised an attack under the chosen-plaintext
setting. However, its complexity is significantly higher than that of the previous work.
Therefore, we do not consider it a primary contribution of this paper, and present this
attack in Appendix C.
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6 Experiments
We have verified the correctness of our theory through experiments. For Yoroi-16, in order
to obtain 4 correct pairs, we need to construct a ciphertext structure of size approximately
213.88 that only activates at most 16 bits. After obtaining the corresponding plaintexts by
querying the decryption oracle, these plaintexts can theoretically form approximately 6.30
correct pairs, of which about 4 will be detected. We repeated the experiment 1000 times,
and the average results are presented in Table 2.

Table 2: Comparison of the theoretical estimation and the experiment results.

Category Size of structure Number of correct pairs Nc

Theoretical estimate 213.88 6.30 4
Experimental value 213.88 6.27 3.96

Subsequently, we performed experiments to verify the process of recovering correct
permutations by using the correct pairs. Considering the large number of candidate
permutations, we conducted experiments on Yoroi-32, as it has fewer branches. For
convenience, we did not collect actual correct pairs. Instead, we randomly selected 16-bit
input pairs satisfying the specific difference2 of the linear layer and treated them as correct
pairs. We conducted several experiments and, after filtering with each correct pair, the
remaining number of permutations is shown in Table 3. For more results, please refer to
Appendix D. These experiments successfully recovered the correct permutation using no
more than 6 correct pairs, while in our attack on Yoroi-32, we provide an average of 8
correct pairs.

Table 3: The number of candidate permutations left.

trails
Nc 0 1 2 3 4 5

1 236.34 224.60 213.88 6 1 -
2 236.34 224.63 212.82 5 1 -
3 236.34 224.60 213.30 6 2 1

7 Conclusion
In this paper, we propose a family of equivalent representations of Yoroi. We are able
to recover an equivalent cipher of the Yoroi without any leaked information of the table
entries. According to the complexity analysis in Section 5.3, under the premise of having
sufficiently correct pairs, the complexity of recovering correct permutation grows at a
super-exponential rate with the extension degree of the finite field in which the linear layer
resides. This is of great significance for future attacks and designs.
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A Approximate the Value of Rpw

Algorithm 1: Approximate the value of Rpw .
Input: Nc correct pairs, n1 random 4-bit permutations and the total number of

candidate permutations Npw .
Output: The value of Rpw

.
1 sum = 0
2 forall correct pair (Pr1 , Pr2) do
3 forall random permutation πi do
4 δ = (πi(FA(pr1

1 ) ⊕ FA(pr2
1 )), · · · , πi(FA(pr1

ℓ ) ⊕ FA(pr2
ℓ ))) · Mt

5 if lsbt×(ℓ−1)(δ) = 0 then
6 sum = sum + 1

7 Rpw = sum/Nc/n2 × Npw

8 return Rpw

B Input Difference of Linear Layer in the First Round from
Right Paris

Table 4: Maximal linearly independent group from correct pairs.

(ζ1, · · · , ζℓ) Maximal linearly independent group on the 4-bit from (ζ2, · · · , ζℓ)
(7,3,14,11,8,1,6,12) (1,3,8,12)
(14,6,15,5,3,2,12,11) (3,2,5,11)
(9,5,1,14,11,3,10,7) (1,3,7,11)

(15,12,13,10,6,4,11,5) (4,5,6,12)
(8,15,3,1,14,5,13,9) (1,3,5,9)
(1,10,2,15,5,6,7,14) (2,6,14,15)
(6,9,12,4,13,7,1,2) (1,2,4,12)

(13,11,9,7,12,8,5,10) (8,9,10,12)
(10,8,7,12,4,9,3,6) (4,8,9,12)
(3,13,6,2,15,10,9,1) (1,2,6,9)
(4,14,8,9,7,11,15,13) (8,9,15,13)
(2,7,4,13,10,12,14,15) (4,12,14,15)

(5,4,10,6,2,13,8,3) (2,3,4,8)
(12,1,11,8,9,14,2,4) (1,2,4,8)
(11,2,5,3,1,15,4,8) (1,2,3,8)

For Yoroi-16, if we obtain a correct pair, we can obtain a maximal linearly independent
group from (ζ2, · · · , ζℓ). For Yoroi-32, we can obtain a maximal linearly independent group
from two different correct pairs. The input difference is shown in Table 5.
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Table 5: Input difference of linear layer in the first round from the right pairs of Yoroi-32.

(14,9,13,11),(15,1,9,5),(1,8,4,14),(13,2,1,10),(3,11,12,1)
(2,3,8,15),(12,10,5,4),(9,4,2,7),(7,13,15,12),(6,5,11,2)
(8,12,6,9),(4,6,3,13),(10,15,14,6),(11,7,10,8),(5,14,7,3)

C The Attack Against Yoroi in the Chosen-Plaintext Sce-
nario

We observe that the process of our blackbox phase can be implemented under the chosen-
plaintext setting, except for the chosen-ciphertext process in step 2 in Section 5.2.1. It
chooses the ciphertexts to obtain the plaintext pairs where the corresponding ciphertexts
of the two elements differ only in the most significant nin bits. Moreover, we found that
these ciphertexts also can be obtained by choosing plaintext and performing collisions
through the following process.

1. Randomly select 2r plaintexts, query the encryption oracle and obtain the corre-
sponding ciphertexts.

2. Store all the ciphertexts in a hash table indexed by the least significant nin × (ℓ − 1)
bits of the corresponding ciphertexts.

3. For each index, pair the plaintexts and obtain the desired pairs.

The subsequent process is exactly the same.

Complexity Increase This process results in an increase in complexity. On one hand,
due to the low probability of collisions, a large number of query encryptions are required
to obtain a desired pair, while in the original version, only two decryptions are needed. On
the other hand, since the pairs do not form a structure, each pair is independent, which
introduces further complexity in the process of sieving for correct pairs. More precisely,
assume 2d desired pairs are required. In the chosen-plaintext scenario, the total number of
distinct elements is 2d+1. By comparison, in the chosen-plaintext-ciphertext scenario, since
the ciphertext is chosen from the structure, only 2 d+1

2 elements are needed. Furthermore,
during the phase of extending elements and sieving for correct pairs (as detailed in Section
5.2.1), the number of queries increases with the total number of elements, which makes
the chosen-plaintext scenario more complex.

The analysis of the extra complexity is as follows. In this process, 2r random plaintexts
can form approximately 22r−1 pairs. The probability of a collision between ciphertext
pairs is 2−nin×(ℓ−1). Thus, the total number of pairs collected is 22r−1 × 2−nin×(ℓ−1), of
which the number of correct pairs is 22r−1 × 2−nin×(ℓ−1) × 2−t×(R−2) × 15

16 . Therefore, in
order to obtain Nc correct pairs, we have

Nc = 22r−1 × 2−nin×(ℓ−1) × 2−t×(R−2) × 15
16 × Pr,

where Pr is the probability that a correct pair can be detected. Additionally, to check the
collected pairs, each pair needs to be extended to 2m+1 plaintexts. Thus, the total data
and time complexity of this process is

2r + 22r−1 × 2−nin×(ℓ−1) × 2m+1 =

√
2 × Nc × 16 × 2t×(R−2) × 2nin×(ℓ−1)

Pr × 15

+Nc × 16 × 2t×(R−2) × 2m+1

Pr × 15 .
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For Yoroi-16, we set Nc = 4, yielding a data and time complexity of 269.88, while
for Yoroi-32, with Nc = 8, the complexity is 288.76. The complexity of this process is
significantly higher than that of other processes. Consequently, the total complexity of the
attack on Yoroi-16 remains 269.88, while for Yoroi-32, it is 288.76.

D Experimental Results

Table 6: The number of candidate permutations left.

trails
Nc 0 1 2 3 4 5 6

1 236.34 224.78 213.39 24 1 - -
2 236.34 224.77 213.47 4 2 1 -
3 236.34 224.76 212.93 4 1 - -
4 236.34 224.56 212.89 12 1 - -
5 236.34 224.64 213.52 4 2 1 -
6 236.34 224.80 213.50 24 2 2 1
7 236.34 224.62 213.10 2 2 1 -
8 236.34 224.64 212.94 24 1 - -
9 236.34 224.65 213.40 24 2 1 -
10 236.34 225.22 213.90 378 6 2 1
11 236.34 225.22 213.34 6 2 2 1
12 236.34 224.63 212.83 16 2 1 -
13 236.34 225.60 213.90 222 6 1 -
14 236.34 224.55 213.49 12 1 - -
15 236.34 224.78 213.64 12 2 2 1
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