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Abstract. Boomerang and rectangle cryptanalysis are powerful cryptanalytic tech-
niques for security evaluation of block ciphers. Automated search for boomerang
distinguishers is an important area of research. In FSE 2023, Hadipour et al. pro-
posed a MILP model of searching boomerang distinguishers for Feistel structure, and
applied their model to obtain the best known boomerang distinguishers to date for
many generalized Feistel ciphers including WARP. In this paper, we focus on improving
Hadipour et al.’s model for generalized Feistel structure and boomerang distinguishers
on WARP. We show that a boomerang distinguisher with more active S-boxes may
have a higher probability. It is caused by the semi-active S-boxes active only in one of
the upper and lower differential trails, which are not considered in Hadipour et al.’s
model. We classify the active S-boxes in the middle part Em in more detail, according
to the associated tables of DDT, DDT2, FBCT and its variants in the computation
formula of boomerang probability for Em. Then, we propose an improved MILP
model to search boomerang distinguishers for generalized Feistel structure. Applying
our model to WARP, we find better boomerang distinguishers for all rounds than those
found by Hadipour et al.’s model. For 15-round boomerang distinguisher on WARP,
the probability is improved by a factor of 25.78. For the longest 23-round boomerang
distinguisher, the probability is improved by a factor of 24.23, resulting in the best
result presented on WARP so far. Exploiting the properties of two local structures and
the probabilistic extension technique, we improve the 26-round rectangle attack and
give the first 27-round rectangle attack on WARP, which extends the best previous
rectangle attack by one round. Note that our findings do not threaten the security of
WARP which iterates 41 rounds.
Keywords: Generalized Feistel · Boomerang · Rectangle attack · WARP · MILP

1 Introduction
Differential cryptanalysis proposed by Biham and Shamir [BS91] is one of the most
powerful cryptanalytic approaches for assessing the security of block ciphers. It exploits
some high-probability differentials to distinguish or recover the key of target ciphers. In
many cases, it may be hard to find a long differential with high probability. In FSE 1999,
Wagner [Wag99] proposed the boomerang attack, which connects two shorter differentials
with high probability to get a longer distinguisher. Boomerang attack works in the
adaptively chosen plaintext and ciphertext setting. To remove the requirement of the
decryption oracle, Kelsey et al. [KKS00] proposed the amplified boomerang attack. Later,
this attack was refined by Biham et al. [BDK01] and called the rectangle attack. The
dependency between the two shorter differentials has a significant impact on the actual
probability of the resulting boomerang distinguisher. Murphy [Mur11] provided examples
where the two differential trails are incompatible. Biryukov and Khovratovich [BK09]
showed that the probability of the boomerang distinguisher can be higher considering the
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boomerang switch. Later, Dunkelman et al. [DKS14] proposed the sandwich distinguisher
to deal with the dependency between the upper and lower differentials. To formulate
the probability of the middle part of a sandwich distinguisher, many tools such as the
BCT [CHP+18] for SPN ciphers and the FBCT [BHL+20] for Feistel ciphers were proposed.

Automated search of boomerang distinguishers for block ciphers is an important area
of research, and has seen significant advances over the past few years. There are mainly
two types of Mixed-Integer Linear Programming (MILP) models for searching boomerang
distinguishers. In [HBS21], Hadipour et al. proposed a MILP model to search boomerang
distinguishers for SPN ciphers, taking the boomerang switching effect into account for
multiple rounds. Delaune et al. [DDV20] proposed another MILP model of searching
for boomerang distinguishers for SPN ciphers, which represents each S-box by 6 binary
variables and handles the computation of probability for the middle part automatically. In
FSE 2023, these two models were both extended to search boomerang distinguishers for
Feistel structures and applied to the lightweight block cipher WARP [BBI+20]. Lallemand
et al. [LMR22] adapted Delaune et al.’s model to search boomerang distinguishers for
Feistel ciphers and gave the first 23-round boomerang distinguisher for WARP. Hadipour et
al. [HNE22] threw the model of [HBS21] for SPN into Feistel structures, and provided an
easy-to-use automatic tool to search sandwich distinguishers. They applied their tool to
obtain the best known boomerang distinguishers for many generalized Feistel ciphers.

WARP is a 128-bit block cipher proposed by Banik et al. [BBI+20] as a lightweight
alternative to AES. It is based on a generalized Feistel structure and provides 128-bit
security in the single-key setting while achieving a small footprint. The designers of
WARP provided the security analysis against differential, linear, impossible differential,
integral, meet-in-the middle and invariant subspace attacks. The longest distinguisher they
mentioned is a 21-round impossible differential distinguisher. Teh and Biryukov [TB22]
gave a 23-round differential attack and a 24-round rectangle attack on WARP in the single-key
setting, and also gave a 41-round differential attack in the related-key setting. Lallemand
et al. [LMR22] gave the first 26-round rectangle attack on WARP. Hadipour et al. [HNE22]
presented the best known boomerang distinguishers up to 23 rounds of WARP. Based on
the monomial prediction technique, Hadipour et al. [HE22] gave integral attacks on up to
32 rounds of WARP. Sun et al. [SWW22] proposed a 33-round zero-correlation attack and
improved the 41-round related-key differential attack. Shi et al. [SLLM24] proposed an
impossible differential attack on 33-round WARP. Hadipour et al. [HDE24] gave the first
differential-linear distinguishers up to 22 rounds of WARP via a boomerang perspective.

Our Contributions. In Hadipour et al.’s MILP model of searching boomerang distinguish-
ers [HNE22], the objective function of searching truncated differential trails is substantially
to minimize the total number of active S-boxes in E0 and E1, and the common active
S-boxes in Em. We show that Hadipour et al.’s model is not optimal when applied to
the generalized Feistel structure. Taking WARP as an example, we present a 14-round
boomerang distinguisher with more common active S-boxes in Em, which has a higher
probability than the 14-round boomerang distinguisher in [HNE22]. By analysis, we find
that it is caused by the semi-active S-boxes in Em, which are active only in one of the
upper and lower differential trails. The semi-active S-boxes are not considered into the
objective function in Hadipour et al.’s model. In the theoretical computation formula of the
boomerang probability r for Em, the semi-active S-boxes may lead to more DDTs involved.
We classify the active S-boxes in Em in more detail, according to the associated tables of
DDT, DDT2, FBCT and its variants in the computation of r, and propose an improved
MILP model to search boomerang distinguishers for generalized Feistel structure. Applying
our model to WARP, we find new 14 to 23 rounds boomerang distinguishers. Compared
with all boomerang distinguishers on round-reduced WARP in [HNE22], our distinguishers
have the higher probabilities. For 15-round boomerang distinguisher, we improve the
probability by a factor of 25.78. For the longest 23-round boomerang distinguisher, the
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probability is improved by a factor of 24.23. We present the best boomerang distinguishers
on WARP so far, which are shown in Table 1. We also apply our model to TWINE [SMMK12]
and Lblock-s [WZ11], and find better 14-round and 15-round boomerang distinguishers
of these two ciphers. Based on our 21-round boomerang distinguisher for WARP, exploiting
the properties of two local structures and the probabilistic extension technique proposed
by Song et al. [SYC+24], we improve the rectangle attack on 26-round WARP and give the
first rectangle attack on 27-round WARP, which improves the best previous rectangle attack
on this cipher by one round. A summary of existing rectangle attacks on WARP is shown
in Table 2. Our source codes for finding boomerang distinguishers on WARP are publicly
available in the following Github repository: https://github.com/feizao51/GFS-model.

Comparisons with the Previous Models. Hadipour et al.’s model [HNE22] partitions
the cipher into three parts and searches good truncated sandwich distinguishers by minimiz-
ing the number of active S-boxes. It encodes independently the propagation of truncated
differentials in E0 and E1, keeping the propagation with probability 1 in Em forward and
backward. Delaune et al.’s model [DDV20] searches good truncated boomerang charac-
teristics for the whole cipher without partition. It employs the framework of an MILP
model to search for truncated differential characteristics. Delaune et al.’s model considers
fully the impacts of different S-boxes on the probability of boomerang characteristics, by
encoding each S-box with six variables related to DDT and BCT variants. But the time
cost of the model [DDV20] is exponential in the number of rounds. It seems difficult to
say which model is better. For the cipher WARP, the results in [HNE22] are better than
those in [LMR22] which are obtained by adapting Delaune et al.’s model. Our model is
based on Hadipour et al.’s model, and refine the modeling for the middle part Em by the
technique of [DDV20]. We consider the different impacts on the boomerang probability for
the different types of active S-boxes in Em and encode them by the table-related variables
as [DDV20]. For the parts of E0 and E1, our model is the same as [HNE22], only counting
the number of active S-boxes. In [DDV20], they need to generate a formula to compute
the boomerang probability and use a CP model to consider the differential cluster, while
we instantiate the differentials in E0 and E1 independently, and compute the probability of
Em experimentally. So, our model saves the execution time and considers the differential
cluster more easily. Compared with the model of [HNE22], we classify the active S-boxes
in Em in more detail according to the associated tables of DDT, DDT2, FBCT and its
variants in the computation of connection probability. Then the MILP modeling for Em is
refined, and the objective function is improved with the weighted sum of different types
of S-box variables. It provides the possibility of finding better boomerang distinguishers,
which is demonstrated in round-reduced WARP as shown in Table 1.

Organization of the Paper. In Section 2, we recall boomerang and rectangle attacks,
BCT and its variants, and the specification of WARP. In Section 3, we recall Hadipour et
al.’s model for searching boomerang distinguishers, and show that the model is not optimal
when applied to generalized Feistel structure. In Section 4, we propose an improved model
to search boomerang distinguishers for generalized Feistel ciphers. In Section 5, we apply
our model to WARP, TWINE and Lblock-s. In Section 6, we present an improved 26-round
rectangle attack and the first 27-round rectangle attack on WARP. We conclude this paper
in Section 7.

2 Preliminaries
2.1 Boomerang and Rectangle Attacks
The boomerang attack [Wag99] allows the adversary to connect two shorter differential
paths to get a longer distinguisher. The target cipher E is split into two parts E = E1 ◦ E0.

https://github.com/feizao51/GFS-model
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Table 1: Summary of boomerang distinguishers for WARP.

Rounds Probability Reference Probability Reference Probability Reference
14 2−19.11 Sect. 5.1 2−20.58 [HNE22]
15 2−22.80 Sect. 5.1 2−28.58 [HNE22]
16 2−30.80 Sect. 5.1 2−34.50 [HNE22]
17 2−38.80 Sect. 5.1
18 2−46.81 Sect. 5.1
19 2−58.81 Sect. 5.1
20 2−70.81 Sect. 5.1 2−75.96 [HNE22]
21 2−79.36 Sect. 5.1 2−84.55 [HNE22] 2−121.11 [TB22]
22 2−91.36 Sect. 5.1 2−96.55 [HNE22] 2−108 [LMR22]
23 2−111.36 Sect. 5.1 2−115.59 [HNE22] 2−124 [LMR22]

Table 2: Summary of existing rectangle attacks on WARP.

Rounds Time Data Memory Reference
24 2125.18 2126.06 2127.06 [TB22]
26 2115.9 2120.6 2120.6 [LMR22]
26 2111.5 2106.18 2106.18 Sect. 6.2
27 2122.63 2116.18 2116.18 Sect. 6.3

For E0, there is a differential ∆1
E0−−→ ∆2 with probability p, called the upper differential.

For E1, there is a differential ∇2
E1−−→ ∇3 with probability q, called the lower differential.

Suppose the two differentials are independent, then we can combine them to form a
boomerang distinguisher on E as shown in Figure 1. The probability of the boomerang
distinguisher is estimated by

Pr(E−1(E(x) ⊕ ∇3)⊕E−1(E(x ⊕ ∆1) ⊕ ∇3) = ∆1) = p2q2.

The process of distinguishing the cipher E from a random permutation by the boomerang
distinguisher is as follows:

1. Randomly choose a plaintext pair (P1, P2) satisfying P1 ⊕ P2 = ∆1, and query the
encryption oracle to obtain the corresponding ciphertext pair (C1, C2).

2. Compute (C3, C4) by C3 = C1 ⊕ ∇3, C4 = C2 ⊕ ∇3, and query the decryption oracle
to obtain the corresponding plaintext pair (P3, P4).

3. Check whether P3 ⊕ P4 = ∆1 or not. If yes, a right quartet (P1, P2, P3, P4) is
obtained, otherwise go back to Step 1.

For the target cipher E, the probability of obtaining a right quartet is p2q2, while it is 2−n

for a random permutation, where n is the block size of the cipher. In order to distinguish
the cipher E from a random permutation, we need p2q2 > 2−n, and the number of quartets
is O(p−2q−2). To formulate the dependency between the upper and lower differential trails,
Dunkelman et al. [DKS14] proposed the sandwich distinguisher. The cipher E is split into
three parts E = E1 ◦ Em ◦ E0 as shown in Figure 1. The middle part Em includes the
dependency between the upper and lower differential trails, and E0, E1 are referred to as
the outer parts of the sandwich distinguisher. The probability of the sandwich distinguisher
is estimated by p2q2r, where r is the connection probability for Em defined by

r = Pr(E−1
m (Em(x) ⊕ ∇2) ⊕ E−1

m (Em(x ⊕ ∆2) ⊕ ∇2) = ∆2).

A boomerang distinguisher can be converted into a rectangle distinguisher [BDK01] in
the chosen plaintext setting. The distinguishing process is as follows:
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Figure 1: The boomerang distinguisher (left) and the sandwich distinguisher (right).

1. Randomly choose two plaintext pairs (P1, P2) and (P3, P4) satisfying P1 ⊕ P2 =
P3⊕P4 = ∆1, and query the encryption oracle to obtain the corresponding ciphertexts
C1, C2, C3, and C4.

2. Check whether C1 ⊕C3 = C2 ⊕C4 = ∇3 or not. If yes, a right quartet (P1, P2, P3, P4)
is obtained, otherwise go back to Step 1.

For the target cipher E, the probability that a right quartet is obtained is 2−np2q2r, while
it is 2−2n for a random permutation. So it is needed that p2q2r > 2−n, and the number of
quartets we need is O(2np−2q−2r−1). According to [Sel08], the success probability of a
rectangle attack with a b-bit advantage is evaluated by

Ps = Φ
(√

sSN − Φ−1(1 − 2−b)√
SN + 1

)
,

where SN = p2q2r/2−n is the signal-to-noise ratio, Φ(·) is the standard normal distribution
function and s is the expected number of right quartets.

2.2 Boomerang Connectivity Table and Its Variants
Researchers have studied how to compute the probability r of the middle part Em. First,
Cid et al. [CHP+18] introduced the tool of boomerang connectivity table (BCT) to deal
with only one S-box layer in Em for SPN block ciphers. Wang et al. [WP19] extended the
BCT and proposed the tool of boomerang difference table (BDT) for Em with multiple
rounds. Later, other variants of BCT are also proposed including the UBCT (upper BCT),
LBCT (lower BCT) and EBCT (extended BCT) in [DDV20].

Figure 2: The parameters of BCT.
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Definition 1. (BCT [CHP+18]). Let S be a permutation of Fn
2 , The BCT of S is a

two-dimensional table defined by

BCT(γ, δ) = #{x ∈ Fn
2 |S−1(S(x) ⊕ δ) ⊕ S−1(S(x ⊕ γ) ⊕ δ) = γ},

where γ, δ ∈ Fn
2 .

Definition 2. (UBCT, LBCT and EBCT [DDV20]). Let S be a permutation of Fn
2 , the

UBCT, LBCT and EBCT of S are defined respectively as

UBCT(γ, θ, δ) = #
{

x ∈ Fn
2

∣∣∣∣∣S−1(S(x) ⊕ δ) ⊕ S−1(S(x ⊕ γ) ⊕ δ) = γ,

S(x) ⊕ S(x ⊕ γ) = θ

}
,

LBCT(γ, δ, λ) = #
{

x ∈ Fn
2

∣∣∣∣∣S−1(S(x) ⊕ δ) ⊕ S−1(S(x ⊕ γ) ⊕ δ) = γ,

S(x) ⊕ S(x ⊕ λ) = δ

}
,

EBCT(γ, θ, δ, λ) = #

x ∈ Fn
2

∣∣∣∣∣∣∣
S−1(S(x) ⊕ δ) ⊕ S−1(S(x ⊕ γ) ⊕ δ) = γ,

S(x) ⊕ S(x ⊕ γ) = θ,

S(x) ⊕ S(x ⊕ λ) = δ

 .

where γ, θ, δ, λ ∈ Fn
2 .

In [BHL+20], Boukerrou et al. extended the BCT framework for SPN block ciphers
to propose the Feistel boomerang connectivity table (FBCT) for Feistel structure. To
formulate the boomerang switch over multiple rounds, the UFBCT (upper FBCT), LFBCT
(lower FBCT) and FBET for Feistel structure are defined as follows, which are analogous
to the UBCT, LBCT and EBCT for SPN structure, respectively.

Figure 3: The parameters of FBCT.

Definition 3. (FBCT [BHL+20]). Let S be a function from Fn
2 to Fm

2 , the FBCT of S is
a two-dimensional table defined by

FBCT(∆, ∇) = #{x ∈ Fn
2 |S(x) ⊕ S(x ⊕ ∆) ⊕ S(x ⊕ ∇) ⊕ S(x ⊕ ∆ ⊕ ∇) = 0},

where ∆, ∇ ∈ Fn
2 .

Definition 4. (UFBCT, LFBCT and FBET [BHL+20]). Let S be a function from Fn
2 to

Fm
2 , the UFBCT, LFBCT and FBET of S are defined respectively as

UFBCT(∆, ∇, α) = #
{

x ∈ Fn
2

∣∣∣∣∣S(x) ⊕ S(x ⊕ ∆) ⊕ S(x ⊕ ∇) ⊕ S(x ⊕ ∆ ⊕ ∇) = 0,

S(x) ⊕ S(x ⊕ ∆) = α

}
,

LFBCT(∆, ∇, δ) = #
{

x ∈ Fn
2

∣∣∣∣∣S(x) ⊕ S(x ⊕ ∆) ⊕ S(x ⊕ ∇) ⊕ S(x ⊕ ∆ ⊕ ∇) = 0,

S(x) ⊕ S(x ⊕ ∇) = δ

}
.

FBET(∆, ∇, α, δ) = #

x ∈ Fn
2

∣∣∣∣∣∣∣
S(x) ⊕ S(x ⊕ ∆) ⊕ S(x ⊕ ∇) ⊕ S(x ⊕ ∆ ⊕ ∇) = 0,

S(x) ⊕ S(x ⊕ ∆) = α,

S(x) ⊕ S(x ⊕ ∇) = δ

 .

where ∆, ∇ ∈ Fn
2 and α, δ ∈ Fm

2 .
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Proposition 1. For a function S from Fn
2 to Fm

2 , we have∑
∇∈Fn

2

UFBCT(∆, ∇, α) = DDT2(∆, α)

∑
∆∈Fn

2

LFBCT(∆, ∇, δ) = DDT2(∇, δ)

where DDT is the differential distribution table of S.

Proof. We prove the first equation as follows, and the other equation can be proved
similarly.∑

∇∈Fn
2

UFBCT(∆, ∇, α)

=
∑

∇∈Fn
2

#
{

x ∈ Fn
2

∣∣∣∣∣S(x) ⊕ S(x ⊕ ∆) ⊕ S(x ⊕ ∇) ⊕ S(x ⊕ ∆ ⊕ ∇) = 0,

S(x) ⊕ S(x ⊕ ∆) = α

}

=
∑

∇∈Fn
2

#
{

x ∈ Fn
2

∣∣∣∣∣α ⊕ S(x ⊕ ∇) ⊕ S(x ⊕ ∆ ⊕ ∇) = 0,

S(x) ⊕ S(x ⊕ ∆) = α

}

=
∑

∇∈Fn
2

#

(x, y) ∈ Fn
2 × Fn

2

∣∣∣∣∣∣∣
S(x) ⊕ S(x ⊕ ∆) = α,

S(y) ⊕ S(y ⊕ ∆) = α,

y = x ⊕ ∇


= #

{
(x, y) ∈ Fn

2 × Fn
2

∣∣∣∣∣S(x) ⊕ S(x ⊕ ∆) = α,

S(y) ⊕ S(y ⊕ ∆) = α

}
= DDT2(∆, α).

2.3 Specification of WARP

Figure 4: The round function of WARP.

WARP [BBI+20] is a lightweight block cipher with 128-bit block and 128-bit key. Em-
ploying a 32-branch generalized Feistel structure, WARP aims at providing 128-bit security
in the single-key setting while achieving a small footprint. It performs 40 full rounds as
represented in Figure 4 plus one partial round (without nibble permutation) to produce
a 128-bit ciphertext. The input state of WARP in the j-th round can be represented as
Xj−1 = Xj−1

0 || · · · ||Xj−1
31 , where Xj−1

i are 4-bit nibbles, 0 ≤ i ≤ 31, 1 ≤ j ≤ 41. The
128-bit master key K is split into two 64-bit halves, K = k0||k1, and each half is used
alternatively as the round key starting with k0. The round function of WARP applies
the same 4-bit S-box to each nibble with an even index Xj−1

2i and XORs the result to
Xj−1

2i+1 followed by a round key addition. Two constants are added to Xj−1
1 and Xj−1

3 .
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Afterwards, a permutation π is applied to the nibbles of the state. We refer to the design
paper [BBI+20] for a full specification. Split ki into 16 nibbles ki = ki[0]|| · · · ||ki[15],
i = 1, 2. Denote by Sj

i the i-th S-box in the j-th round, 0 ≤ i ≤ 15, 1 ≤ j ≤ 41. Denote
by ∆Xj and ∇Xj the differences at Xj in the upper and lower trails, and denote by ∆Xj

i

and ∇Xj
i the differences at Xj

i in the upper and lower trails respectively, 0 ≤ i ≤ 31,
1 ≤ j ≤ 41.

Table 3: S-box S of WARP.

x 0 1 2 3 4 5 6 7 8 9 a b c d e f
S(x) c a d 3 e b f 7 8 9 1 5 0 2 4 6

Table 4: Nibble permutation π of WARP.

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
π(x) 31 6 29 14 1 12 21 8 27 2 3 0 25 4 23 10

x 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
π(x) 15 22 13 30 17 28 5 24 11 18 19 16 9 20 7 26

3 Hadipour et al.’s Boomerang Search Model for Feistel
Structure

3.1 Hadipour et al.’s Model from SPN to Feistel
In [HBS21], Hadipour et al. proposed a MILP model to search boomerang distinguishers
for SPN ciphers. Throwing the model of [HBS21] into Feistel structure, Hadipour et
al. [HNE22] proposed a modified model and applied it to many generalized Feistel ciphers
including WARP. They gave the best known boomerang distinguisher for 23-round WARP
with probability 2−115.59. The model in [HNE22] consists of the following four steps.

Figure 5: Framework of the boomerang search model in [HNE22].

1. Partition the target cipher E into three parts: E0, Em and E1, containing r0, rm

and r1 rounds, respectively. Generate two MILP models with independent variables
to encode the propagation of truncated upper and lower differential trails through
r0 + rm and rm + r1 rounds, respectively. For the upper trail, encode the propagation
of the truncated differential in a standard way over E0, and the propagation forward
with probability one in Em. Similarly, encode the propagation of the truncated
differential in a standard way over E1, and the propagation backward with probability
one in Em. Define binary variables to indicate whether the S-boxes are active in
the upper and lower truncated trails. Denote by ũ0, . . . , ũk−1 and l̃0, . . . , l̃n−1 the
activity of S-boxes in E0 and E1, respectively. Denote by u0, . . . , ut−1 and l0, . . . , lt−1
the activity of S-boxes over Em in the upper and lower trails, respectively. Denote
s0, . . . , st−1 to indicate whether the S-boxes in Em are both active in the upper and
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lower trails. Clearly, si = 1 if and only if ui = li = 1, 0 ≤ i ≤ t − 1. Let the constants
ω0, ωm and ω1 be the costs of the active S-boxes in E0, Em and E1, respectively.
Then construct the MILP model to search truncated boomerang trails with the
objective function:

min
k−1∑
i=0

ω0 · ũi +
t−1∑
i=0

ωm · si +
n−1∑
i=0

ω1 · l̃i.

2. Instantiate the discovered truncated differential trails in Step 1. Look for the best
concrete differential characteristics in E0 and E1 using a bit-wise MILP model. If
there is no differential characteristic satisfying the derived truncated trails, go back
to Step 1 and try again for another truncated trail. After deriving the concrete
differential characteristics, compute the cluster effect of the differential characteristics
with the same input and output differences for E0 and E1. That is, compute the
probabilities p = Pr(∆1

E0−−→ ∆2) and q = Pr(∇2
E1−−→ ∇3).

3. After instantiating the differentials in E0 and E1, compute experimentally the
boomerang probability r for Em:

r = Pr
(
E−1

m (Em(x) ⊕ ∇2) ⊕ E−1
m (Em(x ⊕ ∆2) ⊕ ∇2) = ∆2

)
.

The amount of experimental data can be calculated based on the theoretical estima-
tion of r by the tool of FBCTs. If r = 0, it means the upper and lower differential
trails are incompatible. If so, go back to Step 1 and repeat the process.

4. Compute the entire probability p2q2r of the discovered boomerang distinguisher and
check it. For obtaining a more accurate estimate of the boomerang probability for
the cipher E, the boundaries of the middle part Em may need to be adjusted and
repeat the process above.

3.2 Non-Optimality of Hadipour et al.’s Model for Generalized Feistel
In Hadipour et al.’s model, the objective function of searching truncated boomerang trails
is substantially to minimize the total number of active S-boxes in E0 and E1, and the
common active S-boxes in Em. We will show that it is not optimal when applied to
the generalized Feistel structure, taking 14-round WARP as an example. There are two
boomerang distinguishers on 14-round WARP shown in Appendix A, where Distinguisher
I in Figure 12 was given by Hadipour et al.’s model in [HNE22] and Distinguisher II in
Figure 13 is found by our model. Both of the two distinguishers have the same number of
rounds for E0, E1 and Em, i.e., r0 = r1 = 2 and rm = 10, and have the same probabilities
p = 2−4 for E0 and q = 2−4 for E1. The input and output differences of E and Em are
shown in Table 5. For the middle part Em, Distinguisher I has 3 common active S-boxes,
while Distinguisher II has 4 common active S-boxes. The experimental probability of r for
Em of Distinguisher I is rI = 2−4.58 given in [HNE22]. The experimental probability of r
for Em of Distinguisher II is rII = 2−3.11, which is computed with an experimental data of
216. This example shows that a distinguisher with more active S-boxes may have a higher
probability.

To analyze the reason, we present the theoretical computation formulas of the probability
r over Em for the two distinguishers as follows, using the tool of tables in Section 2.2.
Here A = a = 0xa are known, and B, C, D, E, b, c, d, e are the intermediate variables.

rI = 2−40
∑

B,C,D,E,b,c,d,e

FBCT(A, e)DDT(a, e)FBCT(C, d)DDT(A, B)DDT(B, C)

DDT(b, c)DDT(c, d)LFBCT(E, a, b)DDT(B, D)DDT(D, E),
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Table 5: Specification of two boomerang distinguishers on 14-round WARP.

Distinguisher I [HNE22]
∆X0 ∆X2

0x0000000000000a00000000a500000000 0x0a000000000000000000000000000000
∇X12 ∇X14

0x000a0000000000000000000000000000 0x0000f0a000000000000000000f000000
Distinguisher II

∆X0 ∆X2

0x000a000000000000ff00000000000000 0x00000000000000000000000a00000000
∇X12 ∇X14

0x00a00000000000000000000000000000 0x00000000007000000000a00500000000

rII = 2−24
∑
B,b

FBCT3(B, a)DDT(A, B)DDT2(a, b).

In Distinguisher I, for S3
3 the input difference in the upper trail is A, and the input

difference e in the lower trail is propagated from the difference a at X12
4 through S5

10, so it
is computed by FBCT(A, e)DDT(a, e). For S8

14, the input difference C in the upper trail is
propagated from A at X2

1 through S6
14 and S7

10, and in the lower trail the input difference
d is propagated from b at X11

19 which is the output of common active S-box S11
9 passing

S10
13 and S9

4 , so it is computed by FBCT(C, d)DDT(A, B)DDT(B, C)DDT(b, c)DDT(c, d).
For S11

9 , the input difference E in the upper trail is propagated from B at X6
20 which

is the output of S6
14 through S9

11 and S10
12 , and the input difference of common active

S-box S8
14 in the lower trail comes from the output difference of S11

9 , so it is computed by
LFBCT(E, a, b)DDT(B, D)DDT(D, E). In Distinguisher II, the input differences of S5

9 ,
S7

2 and S9
8 in the upper trail are all B propagated from A at X2

22 through S4
12, and their

output differences in the lower trail are all a coming from X13
2 , so for the three active

S-boxes it can be computed by FBCT3(B, a)DDT(A, B). For the fourth common active
S-box S11

14 , the input difference is free in the upper trail and non-zero in the lower trail, so
it is computed by DDT2(a, b) from Proposition 1.

From the two formulas above, we can see that the former involves more DDTs than the
latter when summing up the probabilities over all boomerang characteristics. It is caused
by the S-boxes active only in one of the upper and lower differential trails, which are not
considered by Hadipour et al.’s model.

4 Improved Model of Searching Boomerang Distinguishers
for Generalized Feistel

In this section, we classify the active S-boxes in the middle part Em according to the tables
used in computation of the probability r, including DDT, DDT2, FBCT and its variants,
and propose an improved MILP model to search boomerang distinguishers for generalized
Feistel structure. For the target cipher, we suppose that round keys are independent and
uniformly random, and the upper and lower differentials are independent.

1. Full-active S-box: An S-box in Em which has non-zero differences both in the
upper and lower differential trails. It is different from the common active S-box in
Hadipour et al.’s model, which includes the case of zero difference caused by XORing
two equal non-zero differences. In computation of the probability r, for full-active
S-boxes, the tables of FBCT, UFBCT, LFBCT or FBET are needed.

2. Semi-active S-box: An S-box in Em which has non-zero difference only in one of
the upper and lower differential trails. A semi-active S-box is called by constrained
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S-box, if its output difference affects the input differences of other active S-boxes
in Em. For example, in Figure 6, suppose the differences γi and δi are non-zero,
i = 1, 2, 3. Then S0 and S2 are semi-active S-boxes, and S1 is a full-active S-box. In
the upper trail, the output difference γ2 of S0 equals the input difference of S1, so
S0 is a constrained S-box. In the lower trail, the output difference δ2 of S2 equals
the input difference of S1, so S2 is also a constrained S-box. When computing the
probability of a certain boomerang trail, one of the FBCT, UFBCT, LFBCT and
FBET for full-active S-boxes and the corresponding DDT of the related constrained
S-boxes are needed.

Figure 6: An example of constrained S-box.

3. Free S-box: An S-box in Em, of which the input difference can take all possible
values including zero. If an S-box has non-zero input difference in the upper trail
while the input difference is free in the lower trail, then we say the S-box is l-free.
If an S-box has non-zero input difference in the lower trail while the input difference
is free in the upper trail, then we say the S-box is u-free. The free S-boxes appear
after XORing two active cells, where the differences may be offset. For example, in
Figure 7, suppose the differences γi and δi are non-zero, i = 1, 2, then the S-box
S0 is l-free. Because S0 has non-zero input difference in the upper trail, while the
input difference of S0 is free in the lower trail. For a free S-box, suppose that the
input differences take all possible values uniformly. By Proposition 1, the expected
boomerang probability of an l-free S-box is

1
2n

∑
∇

1
2n

UFBCT(∆, ∇, α) = 1
22n

DDT2(∆, α),

and the expected boomerang probability of a u-free S-box is 1
22n DDT2(∇, δ). Thus,

for u-free or l-free S-boxes, DDT2 will be used in computation of the probability r.
We note that free S-boxes usually appear in the last few rounds in the upper trail
forward or lower trail backward. So, for Em covering many rounds, there are rarely
S-boxes that are free in both trails. To simplify the modeling, we ignore this kind of
S-boxes.

MILP Modeling. For the parts of E0 and E1, the modeling is same as Hadipour et al.’s
model [HNE22]. For the middle part Em of rm rounds, denote by Sj

i the i-th S-box in
the j-th round, 1 ≤ j ≤ rm, 0 ≤ i < ns, where ns is the number of S-boxes in each round.
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Figure 7: An example of l-free S-box.

Denote binary variables sj
i to indicate whether Sj

i is common active in the upper and
lower differential trails. Denote binary variables isfreeuj

i and isfreelj
i to indicate whether

Sj
i is u-free and l-free, respectively. A free S-box is common active, so isfreeuj

i ≤ sj
i ,

isfreelj
i ≤ sj

i , and isfreeuj
i + isfreelj

i ≤ 1. For the start of the upper and lower trails, set
isfreeu1

i = 0 and isfreelrm
i = 0. Denote binary variables isconuj

i and isconlj
i to indicate

whether Sj
i is a constrained S-box in the upper and lower trails, respectively. A constrained

S-box is a semi-active S-box, so isconuj
i ≤ 1 − sj

i and isconlj
i ≤ 1 − sj

i . For S-boxes Sj
i , we

also define the following binary variables corresponding to the tables used in computation
of the probability r.

1. If Sj
i is a full-active S-box, then sj

i = 1, isfreeuj
i = 0 and isfreelj

i = 0. In the
computation formula of r, the tables of FBCT, UFBCT, LFBCT or FBET may be
used. For simplicity, we define the binary variables isFBCT j

i to indicate whether one
of the four tables is used for Sj

i . Then we have the following constraint conditions:
isFBCT j

i ≤ sj
i ,

isFBCT j
i ≥ sj

i − isfreeuj
i − isfreelj

i ,

isFBCT j
i ≤ 1 − isfreeuj

i − isfreelj
i .

2. If Sj
i is a free S-box, i.e., u-free or l-free, then the DDT2 will be used in the

computation formula of r. We define the binary variables isDDT2j
i to indicate

whether the DDT2 is used for Sj
i . Then we have the following constraint conditions:

isDDT2j
i ≥ isfreeuj

i ,

isDDT2j
i ≥ isfreelj

i ,

isDDT2j
i ≤ isfreeuj

i + isfreelj
i .

3. If Sj
i is a constrained S-box, then its output difference will be treated as an interme-

diate variable which affects the input differences of the other active S-boxes. In the
computation formula of r, the corresponding DDT will be involved. We define the
binary variables isDDT j

i to indicate whether the DDT is used for Sj
i . Then we have

isDDT j
i = isconuj

i + isconlj
i .

Let the constants ωDDT , ωF BCT and ωDDT 2 be the costs of three kinds of tables,
respectively. Suppose the number of S-boxes involved in E0 and E1 are n0 and n1,
respectively. Denote by ũ0, . . . , ũn0−1 and l̃0, . . . , l̃n1−1 the activity of S-boxes in E0 and



456 Improved Search of Boomerang for Generalized Feistel and Application to WARP

E1, and let the constants ω0 and ω1 be the costs of the active S-boxes in E0 and E1,
respectively. Then, the objective function to search truncated differential trails is

min


n0−1∑
i=0

ω0 · ũi +
n1−1∑
i=0

ω1 · l̃i+

rm∑
j=1

ns−1∑
i=0

(
ωDDT · isDDT j

i + ωF BCT · isFBCT j
i + ωDDT 2 · isDDT2j

i

)
.

After obtaining the truncated differential trails, instantiate the differential trails over E0
and E1, and compute experimentally the probability r for Em. The rest steps are the
same as Hadipour et al.’s model.

Rationale of Our Model. First, our model is also an easy-to-use tool and has a low
time cost as the model of [HNE22]. Except for the different modeling for Em, the other
parts are the same as Hadipour et al.’s model. For E0 and E1, we encode independently
the propagation of truncated differentials and just count the number of active S-boxes in
the upper and lower differential trails. The changes in the modeling and objective function
have a limited impact on the time cost. Second, due to the refined modeling for Em,
better truncated boomerang trails may be found by our model. It has been shown by the
example of two boomerang distinguishers on 14-round WARP in Section 3.2 that the number
of common active S-boxes in Em is not the only factor affecting the connection probability
r. For the middle part Em with the same number of rounds, Distinguisher I has 3 common
active S-boxes and 7 constrained S-boxes, while Distinguisher II found by our model has 4
common active S-boxes and 1 constrained S-box. For the constrained S-boxes, their output
differences affect the input differences of the other active S-boxes, which are treated as the
intermediate variables in the theoretical computation formula of r. Then the corresponding
DDTs will be involved and may lead to a lower probability. So, there are more DDTs
involved in the formula of r for Distinguisher I when computing the probabilities of specific
boomerang characteristics. In other words, when the number of constrained S-boxes
increases, their impact on r exceeds the impact of common active S-boxes. To refine
the modeling for Em, we classify the S-boxes in Em into full-active S-boxes, constrained
S-boxes and free S-boxes, and encode them by new binary variables according to the
associated tables of DDT, DDT2, FBCT and its variants in the computation of r. These
variables are considered into the objective function of MILP, so our model may return
better truncated boomerang trails for the target cipher.

5 Applications
5.1 Application to WARP

Applying our model to WARP, we find new boomerang distinguishers for 14 to 23 rounds,
and the full specification is listed in Table 11 in Appendix A. Our program codes are
written in Python, executed with Gurobi as the solver, and the CPU is Intel(R)Core(TM)i5-
1135@2.40GHz. The running times range from 10 to 205 seconds for 14 to 23 rounds. In our
model, the weights w0, w1, wDDT , wF BCT and wDDT 2 are listed in Table 6, which follow
that wDDT < wF BCT < wDDT 2 and wDDT 2 < w0, wDDT 2 < w1, according to the impact
of these tables on the probability. We note that these weights can be adjusted manually.
We first set w0 = w1 = 6, wDDT = 1, wF BCT = 1.5 and wDDT 2 = 3 by experiments,
referring to the public codes of [HNE22]. When there are several optimal solutions for the
same value of objective function, our model randomly outputs one of them. We adjust
the values of wDDT 2 to 2, 3 and 4, instantiate the output truncated trails and select the
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one with the highest probability. The connection probability r for the middle part Em is
estimated by experiments with data far greater than r−1. Compared with all boomerang
distinguishers on round-reduced WARP given in [HNE22], our distinguishers have the higher
probabilities, which are presented in Table 7. Particularly, we improve the probability of
boomerang distinguisher on 15-round WARP by a factor of 25.78. The probability of our
23-round distinguisher is 2−111.36, which is the best result presented so far for boomerang
distinguishers on WARP. It demonstrates the advantage of our model.

Table 6: Weights of variables in our model for WARP.

Rounds w0 w1 wDDT wF BCT wDDT 2
14, 15 6 6 1 1.5 2

16, 17, ..., 21 6 6 1 1.5 3
22, 23 6 6 1 1.5 4

Table 7: Comparison with all boomerang distinguishers on WARP in [HNE22].

Rounds r0 rm r1 p q r Probability Reference

14 2 10 2 2−4 2−4 2−3.11 2−19.11 Ours
2 10 2 2−4 2−4 2−4.58 2−20.58 [HNE22]

15 2 10 3 2−4 2−4 2−8.80 2−22.80 Ours
2 10 3 2−4 2−8 2−4.58 2−28.58 [HNE22]

16 3 10 3 2−8 2−4 2−8.80 2−30.80 Ours
3 10 3 2−8 2−4 2−10.50 2−34.50 [HNE22]

20 5 10 5 2−14 2−14 2−14.81 2−70.81 Ours
5 10 5 2−14 2−14 2−19.96 2−75.96 [HNE22]

21 5 10 6 2−10 2−18 2−23.36 2−79.36 Ours
5 10 6 2−10 2−19 2−26.55 2−84.55 [HNE22]

22 6 10 6 2−16 2−18 2−23.36 2−91.36 Ours
6 10 6 2−16 2−19 2−26.55 2−96.55 [HNE22]

23 7 10 6 2−26 2−18 2−23.36 2−111.36 Ours
6 10 7 2−24 2−20 2−27.59 2−115.59 [HNE22]

5.2 On the Applicability of Our Model

Our model is more suitable for the generalized Feistel ciphers with many branches. For
SPN ciphers and the Feistel ciphers with few branches, the impact of semi-active S-boxes
in Em on the whole boomerang probability is limited. It is the reason why we choose WARP
of 32 branches as a target, which has shown a good effect. We also apply our model to
two other ciphers TWINE and LBlock-s, which are the generalized Feistel structure with
16 branches. We find better 14-round and 15-round boomerang distinguishers for TWINE
and LBlock-s than the previous distinguishers in [HNE22] and [LMR22]. A comparison is
shown in Table 8, and the specification is presented in Table 12 and Table 13 in Appendix B.
Note that by our model we find the same boomerang distinguishers for 13,16 rounds of
TWINE and LBlock-s as those in [HNE22].
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Table 8: Boomerang distinguishers for 14 and 15 rounds of TWINE and LBlock-s.

Ciphers Rounds Ours [HNE22] [LMR22]

TWINE
14 2−39.11 2−42.25

15 2−47.19 2−51.03 2−47.7

Lblock-s
14 2−36.6 2−38.47

15 2−44.82 2−46.49

6 Rectangle Attacks on Round-Reduced WARP

6.1 Properties of Local Structures and Precomputed Table
Before giving the rectangle attacks on WARP, we present some properties of two local
structures shown in Figure 8 and Figure 9, which are helpful for constructing and filtering
data in our rectangle attacks. We also present a kind of precomputed tables related to the
local structure in Figure 9, which will be used in the key recovery stage.

Figure 8: A pair of states through a local structure.

Property 1. In the structure of Figure 8, if X0
l , X1

l and X0
r are known, and the difference

∆Yr = Y 0
r ⊕ Y 1

r is known, then the value of X1
r can be computed directly.

Property 2. In the structure of Figure 8, let ∆Xr = X0
r ⊕ X1

r , v0 = S(Y 0
l ) ⊕ Y 0

r and
v1 = S(Y 1

l ) ⊕ Y 1
r , then v0 ⊕ v1 = ∆Xr.

In Figure 8, since

k = S(X0
l ) ⊕ X0

r ⊕ Y 0
r = S(X1

l ) ⊕ X1
r ⊕ Y 1

r ,

and X0
l = Y 0

l , X1
l = Y 1

l , we have

X1
r = S(X0

l ) ⊕ S(X1
l ) ⊕ X0

r ⊕ ∆Yr,

v0 ⊕ v1 = S(Y 0
l ) ⊕ Y 0

r ⊕ S(Y 1
l ) ⊕ Y 1

r = ∆Xr.

In our rectangle attack, Property 1 will be used to construct the plaintext pair (P1, P2)
satisfying the desired difference, and Property 2 will be used to construct the desired
ciphertext quartets. When the difference ∆Xr is known for the distinguisher, we can com-
pute the values (v1, v2) for (C1, C2) and (v3, v4) for (C3, C4) according to Property 2, and
then find the quartets (C1, C2, C3, C4) by the collision of (v1, v2) ⊕ (v3, v4) = (∆Xr, ∆Xr).

Property 3. In the structure of Figure 9, if the differences ∆Xr = X0
r ⊕X1

r , ∆Zr = Z0
r ⊕Z1

r ,
∆Zl

′ = Z0
l

′ ⊕ Z1
l

′ are known, and ∆Zl = Z0
l ⊕ Z1

l = 0, then the differences ∆in = X0
l ⊕ X1

l

and ∆out = S(X0
l ) ⊕ S(X1

l ) can be computed directly.
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Figure 9: A pair of states through another local structure.

In Figure 9, it can be seen that

∆Yr = Y 0
r ⊕ Y 1

r = Z0
l

′ ⊕ Z1
l

′ = ∆Zl
′, ∆out = ∆Xr ⊕ ∆Yr = ∆Xr ⊕ ∆Zl

′.

Since ∆Zl = Z0
l ⊕ Z1

l = 0, we have that

∆in = Y 0
l ⊕ Y 1

l = Z0
r ⊕ Z1

r = ∆Zr.

In the rectangle attack, for the ciphertext quartets (C1, C2, C3, C4), by Property 3 we can
compute the input difference ∆in and output difference ∆out of S-box for (C1, C3) and
(C2, C4). For S-box of WARP, a random pair of input and output differences is a possible
differential with probability about 2−1.32. It will provide about 2.64 bits filter for the
ciphertext quartets by looking up the DDT of S-box.
Construct Precomputed Table. In Figure 9, if we know Z0

l , Z0
r , Z0

l
′, Z1

l , Z1
r , Z1

l
′ and

the key k1, then the difference ∆Xr = X0
r ⊕ X1

r can be computed by

∆Xr = S(S(Z0
l ) ⊕ Z0

r ⊕ k1) ⊕ S(S(Z1
l ) ⊕ Z1

r ⊕ k1) ⊕ Z0
l

′ ⊕ Z1
l

′.

In the key recovery stage of a rectangle attack, for a quartet (C1, C2, C3, C4) we need to
determine the candidates of k1 when knowing the values at Z0

l , Z0
r , Z0

r
′ for C1, C2, the

values at Z1
l , Z1

r , Z1
r

′ for C3, C4, and the value ∆Xr = α. To reduce the time complexity
of key recovery, we can precompute a table Tα of size 248 as follows. Initialize Tα with all
elements NULL.

1. For each of 224 values of (Z0
l , Z0

r , Z0
r

′, Z1
l , Z1

r , Z1
r

′), guess 24 values of k1 and compute
∆Xr by the formula above. If ∆Xr = α, then store (Z0

l , Z0
r , Z0

r
′, Z1

l , Z1
r , Z1

r
′) in a

table L indexed by the corresponding value of k1. For each index in L, there are 220

24-bit terms on average.

2. For each index k1 in L, combine any two terms from the 220 terms to get 240 ordered
term pairs, and store k1 in Tα indexed by the 48-bit values of the ordered term pairs.

On average, there are 240+4−48 = 2−4 values in each index of Tα. That is, a quartet
(C1, C2, C3, C4) can suggest candidates of k1 with probability 2−4. Using the precomputed
table Tα, we can filter the quartet or obtain the candidate of k1 by one table lookup in the
key recovery stage. The time and memory complexities for constructing the precomputed
table Tα are not more than 248.
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6.2 Improved Rectangle Attack on 26-Round WARP

Based on the 21-round boomerang distinguisher of probability 2−79.36 found by our model,
we mount an improved rectangle attack on 26-round WARP by extending two rounds
before and three rounds at the end of the distinguisher, which is illustrated in Figure 10.
Compared with the 26-round rectangle attack in [LMR22], the time, data and memory
complexities are reduced by 24.4, 214.42 and 214.42, respectively. The probability of the
21-round rectangle distinguisher transformed from the 21-round boomerang distinguisher
is 2−128−79.36 = 2−207.36, and the input and output differences are

∆1 = 0x0000000000000f00000000faa5000000,

∇3 = 0x0000a0a00000000df00a00700500a0a0.

Figure 10: Rectangle attack on 26-round WARP.

Precomputation. Construct two precomputed tables T0 and Ta of size 248 according
to the method introduced in Section 6.1, where α = 0 and 0xa. The time and memory
complexities are not more than 2 × 248 = 249.

The attack process is as follows.

1. Choose 2t plaintext structures each containing 224 plaintexts, where the 3 orange
nibbles and 3 green nibbles of X0 in Figure 10 traverse all possible values and the
other 26 nibbles take constants randomly.

2. For each plaintext structure Ω, construct the related plaintext structure Ω′ such that
plaintext pairs (P1, P2), P1 ∈ Ω, P2 ∈ Ω′, satisfy the desired 26-nibble difference
in X0, of which the differences at 24 white nibbles are known and the differences
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at 2 gray nibbles ∆X0
15 and ∆X0

21 can be computed as follows. Since the value of
X0

14 for P1 is known constant, and the differences ∆X0
14 = 0xa, ∆X1

10 = 0, we have
∆X0

15 = S(X0
14) ⊕ S(X0

14 ⊕ 0xa). ∆X0
21 can be computed in the same way.

3. Initialize a list of 248 counters, which correspond to 12 nibbles of key k0[1], k0[2],
k0[12], k1[1], k1[2], k1[3], k1[5], k1[6], k1[8], k1[9], k1[12] and k1[13].

4. Guess k0[1], k0[2] and k0[12], and construct the desired plaintext pairs (P1, P2),
P1 ∈ Ω, P2 ∈ Ω′ as follows. For each plaintext structure Ω, partly encrypt it to
obtain the values at the 3 red nibbles in X1. Then, the differences at the 3 orange
nibbles in X1 can be computed based on Property 1. Furthermore, for each P1 ∈ Ω,
we can compute the values at the 3 green nibbles in X0 for P2 based on Property 1.
There are 2t+24 plaintext pairs (P1, P2) obtained for each guessed key.

5. For each ciphertext pair (C1, C2) of 2t+24 plaintext pairs (P1, P2), compute the values
of (vi1, vi2), i = 1, 2, based on Property 2 for 2 local structures marked by red squares
in the final round. Insert (C1, C2) into a hash table H indexed by 26 nibbles, which
consists of the values of (C1, C2) at the 11 blue nibbles and the 2 values of (vi1, vi2).
Construct the ciphertext quartets (C1, C2, C3, C4) by looking up the table H, such
that for (C1, C3) and (C2, C4) the differences at above 13 nibbles are equal to the
known values. There are about Q = 22t+47−26×4 = 22t−57 quartets obtained.

6. For each of Q quartets, derive the candidates of 9-nibble key k1[13], k1[1], k1[12], k1[6],
k1[8], k1[2], k1[5], k1[9] and k1[3] by looking up the precomputed tables successively,
which are shown in Table 9. Each table provides a filter of 2−4 for quartets. For
example, lookup the table Ta to find the candidates of k1[13], according to the
12-nibble values of (C1, C3, C2, C4) at X26

19 , X26
16 , X26

29 . If there is a candidate for
k1[13], then continue to look up the next table in the same way, otherwise, go to the
next quartet. If there is a candidate for the 9-nibble key together with the guessed
k0[1], k0[2] and k0[12], then add 1 to the corresponding counter.

7. Select the top 248−b hits in the counters to be the candidates of the 12-nibble key.
Exhaustively search the remaining 20 nibbles of the key and verify them.

Table 9: Precomputation tables for key recovery attack on 26-round WARP.

Key Positions related with index Precomputed table Complexity
k1[13] X26

19 , X26
16 , X26

29 Ta Q
k1[1] X26

29 , X26
14 , X26

31 T0 2−4Q
k1[12] X26

11 , X26
18 , X26

1 T0 2−8Q
k1[6] X26

25 , X26
4 , X26

7 T0 2−12Q
k1[8] X26

15 , X26
22 , X26

9 Ta 2−16Q
k1[2] X26

1 , X26
12 , X26

11 T0 2−20Q
k1[5] X26

3 , X26
0 , X26

13 T0 2−24Q
k1[9] X26

13 , X26
30 , X26

15 T0 2−28Q
k1[3] X26

21 , X26
8 , X26

19 T0 2−32Q

Complexity Analysis. The data complexity is 2 × 2t × 224 = 2t+25 for 2t plaintext
structures and the related plaintext structures. For each guessed key, there are 2t+24

plaintext pairs (P1, P2) satisfying the input difference of the 21-round distinguisher. Then,
there are about 22t+47 quartets satisfying the input differences of the rectangle distinguisher.
Note that the probability of the rectangle distinguisher is 2−207.36. For the expected number
of right quartets s = 22t+47−207.36 = 4, we need t = 81.18. So the data complexity is
2t+25 = 2106.18. The time complexity of Step 4 is about 212 × (2t +2t+24)×3×2 ≈ 2t+37.58
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S-box computations, which is equivalent to 2t+37.58/(26 × 16) ≈ 2t+28.71 encryptions of 26-
round WARP. The time complexity of Step 5 is about 212 ×2t+25 ×2 S-box computations and
2t+24+12 memory access, which is equivalent to 2t+38.32/(26 × 16) ≈ 2t+29.45 encryptions.
The time complexity of Step 6 is about 212 × Q = 22t−45 table lookups, which is equivalent
to 22t−53.87 encryptions. The complexity of Step 7 is 2128−b encryptions. So the overall
time complexity is 2t+25 + 2t+28.71 + 2t+29.45 + 22t−53.87 + 2128−b. Taking b = 24 for the
success probability of 84%, the overall time complexity is 2111.5. The memory complexity
is 2106.18, which is bounded by the hash table H.

6.3 Rectangle Attack on 27-Round WARP

Employing the probabilistic extension technique for the rectangle attacks proposed by
Song et al. in [SYC+24], based on the same 21-round boomerang distinguisher, we mount
a rectangle attack on 27-round WARP by extending two rounds before and four rounds at
the end of the distinguisher, which is illustrated in Figure 11.

Figure 11: Rectangle attack on 27-round WARP.

Probabilistic Extension. In Figure 11, the output differences of the five yellow-colored S-
boxes are set to fixed values each with probability 2−2. That is, the differentials 0xd−→0xf
and 0x5−→0xa for the two S-boxes in the 25th round, and the differentials 0xa−→0xa,
0xa−→0xa and 0x7−→0x5 for the three S-boxes in the 26th round. The probability of the
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extension part for two sides is 2−2×5×2 = 2−20, so the total probability of the rectangle
distinguisher is 2−128−79.36−20 = 2−227.36.
Precomputation. Construct three precomputed tables T0, Ta and Td of size 248 according
to the method introduced in Section 6.1, where α = 0, 0xa and 0xd. The time and memory
complexities are not more than 3 × 248 ≈ 249.58.

Choosing 2t plaintext structures, guessing k0[1],k0[2],k0[12] and constructing plaintext
pairs are the same as the Steps of 1, 2, 4 in the 26-round attack. For each guessed key, we
get 2t+24 desired plaintext pairs. The rest process is as follows:

1. Initialize a list of 236 counters, which correspond to 9 nibbles of key k0[1], k0[2], k0[3],
k0[4], k0[10], k0[12], k0[13], k0[14] and k0[15].

2. For each ciphertext pair (C1, C2) of 2t+24 plaintext pairs (P1, P2), compute the values
of (vi1, vi2), i = 1, 2, ..., 7, based on Property 2 for 7 local structures marked by red
squares in the final round. Insert (C1, C2) into a hash table H indexed by 30 nibbles,
which consists of the values of (C1, C2) at 8 blue nibbles and the 7 values of (vi1, vi2).
Construct the ciphertext quartets (C1, C2, C3, C4) by looking up the table H, such
that for (C1, C3) and (C2, C4) the differences at above 15 nibbles are equal to the
known values. There are about 22t+47−30×4 = 22t−73 quartets obtained.

3. For each of 22t−73 quartets (C1, C2, C3, C4), based on Property 3 we can compute
the input and output differences of the 3 red-marked S-boxes in the 26th round
for (C1, C3) and (C2, C4), respectively. Note that for any given pair of input and
output differences, it is a possible differential for S-box of WARP with probability
about 2−1.32. That is, there exists 1.32-bit filter for each pair of input and output
differences. In total, there is a filter of 2−1.32×3×2 = 2−7.92 for the quartets. Then,
the expected number of quartets left is Q = 22t−73−7.92 = 22t−80.92.

4. For each of Q quartets, derive the candidates of 6-nibble key k0[15], k0[14], k0[10],
k0[13], k0[4] and k0[3] by looking up the precomputed tables successively, which are
shown in Table 10.

5. Select the top 236−b hits in the counters to be the candidates of the 9-nibble key.
Exhaustively search the remaining 23 nibbles of the key and verify them.

Table 10: Precomputation tables for key recovery attack on 27-round WARP.

Key Positions related with index Precomputed table Complexity
k0[15] X27

7 , X27
26 , X27

21 T0 Q
k0[14] X27

9 , X27
20 , X27

23 Td 2−4Q
k0[10] X27

17 , X27
28 , X27

27 Ta 2−8Q
k0[13] X27

19 , X27
16 , X27

29 T0 2−12Q
k0[4] X27

27 , X27
2 , X27

17 T0 2−16Q
k0[3] X27

21 , X27
8 , X27

19 T0 2−20Q

Complexity Analysis. There are about 22t+47 quartets satisfying the input differences
of the rectangle distinguisher. Note that the probability of the rectangle distinguisher
is 2−227.36. For the expected number of right quartets s = 22t+47−227.36 = 4, we need
t = 91.18. So the data complexity is 2t+25 = 2116.18. The time complexity of constructing
plaintext pairs is about 212 × (2t + 2t+24) × 3 × 2 ≈ 2t+37.58 S-box computations, which
is equivalent to 2t+37.58/(27 × 16) ≈ 2t+28.83 encryptions of 27-round WARP. The time
complexity of Step 2 is about 212 × 2t+25 × 7 S-box computations and 2t+24+12 memory
access, which is equivalent to 2t+39.91/(27×16) ≈ 2t+31.16 encryptions. The time complexity
of Step 3 is about 22t−73 XORs and lookups DDT of S-box, which is equivalent to 22t−80.75
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encryptions. The time complexity of Step 4 is about 212 × Q = 22t−68.92 table lookups,
which is equivalent to 22t−77.67 encryptions. The complexity of Step 5 is 2128−b encryptions.
So the overall time complexity is 2t+25 + 2t+28.83 + 2t+31.16 + 22t−80.75 + 22t−77.67 + 2128−b.
Taking b = 12 for the success probability of 84.11%, the overall time complexity is 2122.63.
The memory complexity is 2116.18, which is bounded by the hash table H.

7 Conclusions
In this paper, we revisit the model of searching boomerang distinguishers for Feistel
structure proposed by Hadipour et al., and show the model is not optimal when applied to
the generalized Feistel structure. It is shown that a boomerang distinguisher with more
common active S-boxes may have a higher probability, which is caused by the semi-active
S-boxes in Em only active in either the upper or the lower differential trail. The semi-active
S-boxes are not considered by the objective function in Hadipour et al.’s Model. We classify
the active S-boxes in Em in more detail according to the associated tables of DDT, DDT2,
FBCT and its variants in the computation of boomerang probability. Then, we propose an
improved MILP model to search boomerang distinguishers for generalized Feistel structure.
Applying this model to WARP, we find better boomerang distinguishers for all rounds than
that found by Hadipour et al.’s model. For 15-round WARP, the probability of boomerang
distinguisher is improved by a factor of 25.78. We present a boomerang distinguisher on
23-round WARP with probability 2−111.36, resulting in the best result presented on WARP
so far. We also apply our model to TWINE and Lblock-s, and find better 14-round and
15-round boomerang distinguishers of these two ciphers. Based on our 21-round boomerang
distinguisher for WARP, we improved the 26-round rectangle attack on WARP with the time
complexity of 2111.5 reduced by 24.4. Exploiting the properties of two local structures and
the probabilistic extension technique, we give the first rectangle attack on 27-round WARP,
which improves the best previous rectangle attack on this cipher by one round.
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A Boomerang Distinguishers for WARP

In Figure 12 and Figure 13, the red cells and lines indicate the propagation of active cells
in the upper trail, and the blue cells and lines indicate the propagation of active cells in the
lower trail. The purple cells and lines indicate they are common active in the upper and
lower trails, and the S-boxes marked with green circles indicate they are the constrained
S-boxes. The capital letters in cells are variables of the differences in the upper trail, and
the lowercase letters in cells are variables of the differences in the lower trail.

Figure 12: Boomerang distinguisher I on 14-round WARP [HNE22].
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Figure 13: Boomerang distinguisher II on 14-round WARP.
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Table 11: Specification of boomerang distinguishers for 14 to 23 rounds of WARP.

14 rounds
Pr = 2−19.11 r0 = 2 rm = 10 r1 = 2 p = 2−4 q = 2−4 r = 2−3.11

∆X0 ∆X2

0x000a000000000000ff00000000000000 0x00000000000000000000000a00000000
∇X12 ∇X14

0x00a00000000000000000000000000000 0x00000000007000000000a00500000000
15 rounds

Pr = 2−22.80 r0 = 2 rm = 10 r1 = 3 p = 2−4 q = 2−4 r = 2−8.80

∆X0 ∆X2

0xff00000000000000000a000000000000 0x0000000a000000000000000000000000
∇X12 ∇X15

0x00000000000a00000000000000000000 0x00000000a00000000000050000a00000
16 rounds

Pr = 2−30.80 r0 = 3 rm = 10 r1 = 3 p = 2−8 q = 2−4 r = 2−8.80

∆X0 ∆X3

0x0000000000af00000000a50000050000 0x00000000000000000000000a00000000
∇X13 ∇X16

0x000000000000000000000000000a0000 0x0000050000a0000000000000a0000000
17 rounds

Pr = 2−38.80 r0 = 3 rm = 10 r1 = 4 p = 2−8 q = 2−8 r = 2−8.80

∆X0 ∆X3

0x0000000000af00000000a50000050000 0x00000000000000000000000a00000000
∇X13 ∇X17

0x000000000000000000000000000a0000 0xf00a0000000a500000a0000000000000
18 rounds

Pr = 2−46.81 r0 = 4 rm = 10 r1 = 4 p = 2−8 q = 2−8 r = 2−14.81

∆X0 ∆X4

0x00000000000005000000007daf000000 0x00000000000000000000000000a00000
∇X14 ∇X18

0x00000000000000000000000000000a00 0x00500a00000000000a000000f000a000
19 rounds

Pr = 2−58.81 r0 = 5 rm = 10 r1 = 4 p = 2−14 q = 2−8 r = 2−14.81

∆X0 ∆X4

0x0000000000005aa50ffa000a00000000 0x00000000000000000000000000a00000
∇X14 ∇X19

0x00000000000000000000000000000a00 0x00500a00000000000a000000f000a000
20 rounds

Pr = 2−70.81 r0 = 5 rm = 10 r1 = 5 p = 2−14 q = 2−14 r = 2−14.81

∆X0 ∆X5

0x0000000000005aa50ffa000a00000000 0x00000000000000000000000000a00000
∇X15 ∇X20

0x00000000000000000000000000000a00 0x000000000a0aa0a00050d0a000000500
21 rounds

Pr = 2−79.36 r0 = 5 rm = 10 r1 = 6 p = 2−10 q = 2−18 r = 2−23.36

∆X0 ∆X5

0x0000000000000f00000000faa5000000 0x0000000000000000a00a000000000000
∇X15 ∇X21

0x00000000000000000000000a00000000 0x0000a0a00000000df00a00700500a0a0
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22 rounds
Pr = 2−91.36 r0 = 6 rm = 10 r1 = 6 p = 2−16 q = 2−18 r = 2−23.36

∆X0 ∆X6

0x0000000000005aa50ffa000a00000000 0x0000000000000000a00a000000000000
∇X16 ∇X22

0x00000000000000000000000a00000000 0x0000a0a00000000df00a00700500a0a0
23 rounds

Pr = 2−111.36 r0 = 7 rm = 10 r1 = 6 p = 2−26 q = 2−18 r = 2−23.36

∆X0 ∆X7

0x000d0a00000000af7daa750005750000 0x0000000000000000a00a000000000000
∇X17 ∇X23

0x00000000000000000000000a00000000 0x0000a0a00000000df00a00700500a0a0

B Boomerang Distinguishers for TWINE and LBlock-s

Table 12: Specification of boomerang distinguishers for 14 and 15 rounds of TWINE.

14 rounds
Pr = 2−39.11 r0 = 4 rm = 7 r1 = 3 p = 2−8 q = 2−4 r = 2−15.11

∆X0 0x079800a700000000 ∆X4 0x00000000a0000000
∇X11 0x00000d0000000000 ∇X14 0x00e00000010000d0

15 rounds
Pr = 2−47.19 r0 = 4 rm = 8 r1 = 3 p = 2−8 q = 2−8 r = 2−15.19

∆X0 0x0065002a00050000 ∆X4 0x0000000000006000
∇X12 0x0000000000000020 ∇X15 0x02a0a00000070090

Table 13: Specification of boomerang distinguishers for 14 and 15 rounds of LBlock-s.

14 rounds
Pr = 2−36.6 r0 = 4 rm = 7 r1 = 3 p = 2−8 q = 2−4 r = 2−12.6

∆X0 0x0004040000040440 ∆X4 0x0400000000000000
∇X11 0x0000000000000040 ∇X14 0x0040000400000040

15 rounds
Pr = 2−44.82 r0 = 4 rm = 7 r1 = 4 p = 2−8 q = 2−8 r = 2−12.82

∆X0 0x0004040000040440 ∆X4 0x0400000000000000
∇X11 0x0000000004000000 ∇X15 0x0004404000004400
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