
IACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 2020, No. 4, pp. 88–103. DOI:10.46586/tosc.v2020.i4.88-103

Fake Near Collisions Attacks∗

Patrick Derbez†, Pierre-Alain Fouque and Victor Mollimard

Univ Rennes, Centre National de la Recherche Scientifique (CNRS), Institut de Recherche en
Informatique et Systèmes Aléatoires (IRISA), Rennes, France

{patrick.derbez,pierre-alain.fouque,victor.mollimard}@irisa.fr

Abstract. Fast Near collision attacks on the stream ciphers Grain v1 and A5/1 were
presented at Eurocrypt 2018 and Asiacrypt 2019 respectively. They use the fact that
the entire internal state can be split into two parts so that the second part can be
recovered from the first one which can be found using the keystream prefix and some
guesses of the key materials.
In this paper we reevaluate the complexity of these attacks and show that actually
they are inferior to previously known results. Basically, we show that their complexity
is actually much higher and we point out the main problems of these papers based on
information theoretic ideas. We also check that some distributions do not have the
predicted entropy loss claimed by the authors. Checking cryptographic attacks with
galactic complexity is difficult in general. In particular, as these attacks involve many
steps it is hard to identify precisely where the attacks are flawed. But for the attack
against A5/1, it could have been avoided if the author had provided a full experiment
of its attack since the overall claimed complexity was lower than 232 in both time
and memory.
Keywords: Fast near collision technique · Reproducibility · Stream cipher

1 Introduction
Checking results is in some sciences such as experimental physics as important as the
result itself. In these research domains, results have to be validated by two separate
and independent teams before being published. In some computer sciences areas where
results can depend on the input dataset, it is also highly important to give access to these
data and to the code. In data mining for example the reproducibility of results has been
acknowledged as mandatory before publishing work in order to ease the checking and/or
comparison of this work with further research works.

In symmetric cryptography, where usually the complexities of attacks and distinguishers
can be out of reach with experiments, a well-known method consists in experimentally
checking only some parts of the attack and/or by targeting a toy cipher. Indeed attacks can
usually be split in two parts: the adversary has to guess some bits and then he evaluates
some distinguishers. The evaluation of the distinguisher cannot be exhaustive since it
would have been tested for all guess bits. If we checked that the distinguisher is working
for random guess, we declare that the attack is validated. However, it is the authors
accountability to check carefully the experiments and reviewers usually verified the fact
that the authors seem to have correctly performed their results. Nevertheless, sometimes

∗The ToSC editorial board has contacted Bin Zhang and he stands by his claims regarding the
correctness of the results of [ZXM18] and [Zha19]. Nevertheless, the editorial board considers the new
results of this paper (that identifies errors in [ZXM18] and [Zha19]) as correct.

†Patrick Derbez, Pierre-Alain Fouque and Victor Mollimard were supported by the French Agence
Nationale de la Recherche through the CryptAudit project under Contract ANR-17-CE39-0003.

Licensed under Creative Commons License CC-BY 4.0.
Received: 2020-09-01 Accepted: 2020-11-01 Published: 2020-12-10

https://doi.org/10.46586/tosc.v2020.i4.88-103
mailto:patrick.derbez@irisa.fr,pierre-alain.fouque@irisa.fr,victor.mollimard@irisa.fr
http://creativecommons.org/licenses/by/4.0/

Patrick Derbez, Pierre-Alain Fouque and Victor Mollimard 89

it is not sufficient to ensure the correctness of some proposed attacks and it is up to the
community to revisit and discuss previous works to offer new insights on their contributions.
For instance in [Gra01] Granboulan showed that differential attacks on SKIPJACK proposed
in [KRW99] were flawed because the probabilities of some differential characteristics
were not correctly evaluated. In 2007, Wang, Keller and Dunkelman [WKD07] caught
a similar error for an impossible differential used in several attacks on SHACAL-1. Such
errors may also come from hypothesis which do not hold for all ciphers as exemplified by
Murphy [Mur11] with boomerangs on both DES and AES.

Symmetric cryptography is not the only place where mistakes can be made. In public-key
cryptography and provable cryptography, it is also possible to discover errors as the famous
bug in the OAEP paper [BR94], which has been corrected in [Sho01, FOPS01]. The same
kind of problems appeared in proofs in symmetric cryptography for the equivalence between
the random oracle model and ideal cipher model [CPS08] corrected in [HKT11] and more
recently in the security proof of the OCB-2 mode of operation [IIMP19]. Consequently,
Barthe et al. have developed tools to verify these proofs as in [BGHB11, BGLB11] and
even on the corrected proofs they have been able to spot some errors or imprecisions
since these tools do not accept unclear arguments or logical flaws. As a consequence, they
design the EasyCrypt tool to help the verification of cryptographic proofs to reason about
code-based proofs as these tools were first developed to verify programs. There is no such
tool to check symmetric-key cryptanalysis. The verification of these attacks boils down to
checking the complexity analysis of the cryptanalytic algorithm. The main difficulty is that
some parts are heuristic and the verification of these heuristics are not easy to automatize
and to perform rigorously. Moreover, understanding the problems is not always an easy
task since it requires to reverse engineer the experiments performed which are subject to
statistical effects and it is less easy than reading a proof.

Contributions. In this paper, we look at the recent fast near collision attacks proposed
by Zhang, Xu and Meier against the Grain v1 [ZXM18] stream cipher and by Zhang
against A5/1 [Zha19]. The main idea behind fast near collision attack consists in a divide-
and-conquer partition of the full internal state into the crucial part (CP) and the rest part
(RP). The latter part can be efficiently recovered using only the CP, while the former one
is retrieved using a near collision attack based on a small number of bits of the keystream.

Our first goal was to implement the attack on the A5/1 stream cipher since the time
and memory complexities seem within our reach and practical. However, during this
process we discovered several issues in the claimed probabilities, leading to an overall
complexity much worst than expected. In fact, we came up to implement a slower version
of the attack proposed by Golić at Eurocrypt’97 [Gol97]. Consequently, we scrutinized this
article and decided to reevaluate the time complexity to 228 calls to (the end of) Golić’s
attack, for an overall complexity around 242. Since this attack is a bit difficult as it is
flooded with the details of the stream cipher under attack, we decided to present its basic
ideas in a self-contained manner. Finally, we decided to also verify the previous attack on
Grain v1 as proposed at Eurocrypt’18 and we discovered similar problems in the analysis.
In particular, the correct overall complexity is 2113 and so the attack is less efficient than
the naive exhaustive search in 287.4 ticks on Grain v1.

More importantly, we show in Section 2 that fast near collision attacks, as described in
both [ZXM18] and [Zha19], are intrinsically erroneous. Replacing the refined self-contained
method, which is the core of those attacks and the only algorithm relying on near collisions,
by an algorithm outputting a random set (of fixed size) of pre-images would lead to the
exact same complexities. Thus such attacks are illusive.

90 Fake Near Collisions Attacks

2 Fast Near Collision
At Eurocrypt’18, Zhang et al. described a new powerful cryptanalysis technique called fast
near collision attack. This technique was specially designed to analyze stream ciphers and
was successfully applied to both Grain v1 [HJMM06] and A5/1 [BGW99]. It combines
both a divide-and-conquer approach and near collisions. The core idea is to use near
collisions to restrict the possible values of some bits of the internal state.

2.1 The refined self-contained method
Let f be a public function from n to m bits, xs be a secret n-bit word and ks the output
of f(xs). A classical objective is to retrieve xs from the knowledge of both f and ks. In
the following we will explain how the fast near collision technique claims to restrict the
search space for xs.

The process is composed of 3 procedures which aim at computing a set X containing
xs with a high enough probability.

Precomputation. The first step in a fast near collision attack is to construct a differential
table Td mapping each pair (∆k, k) to all possible ∆x such that:

• |∆x| ≤ d

• there exists x such that f(x) = k and f(x⊕∆x) = k ⊕∆k.

In other words, the table Td is a variant of the classical differential distribution table
associated to an Sbox. The number of times ∆x is solution for (∆k, k) is also stored as
extra information. This allows for each value of k to select ∆k to maximize the probability
of f(x⊕∆x) = k ⊕∆k knowing both f(x) = k and ∆x ∈ Td [∆k, k].

Note that in case it would be too costly to fully compute Td, x and ∆x can be sampled.

Online. The second step of the procedure uses the precomputed table to generate a set
X containing xs with a good probability. The process is described in Algorithm 1. The
idea is to randomly generate x, compute k = f(x), look into Td [k ⊕ ks, ks] for possible
∆x’s and check whether f(x⊕∆x) = ks. If the last equality holds then x⊕∆x is added
to the set X as a possible value for xs.

Algorithm 1 The refined self-contained method
1: Data: keystream ks, difference ∆k, table Td,
2: Result: a set X such that xs ∈ X has high probability
3: X ← ∅
4: for i = 0 to N do
5: randomly generate x such that f(x) = ks ⊕∆k
6: for all ∆x ∈ Td[∆k, ks] do
7: if f(x⊕∆x) = ks then
8: X ← X ∪ {x⊕∆x}
9: end if

10: end for
11: end for
12: return X

Amplifying phase. In order to increase the probability that X contains xs, Zhang et
al. propose to run N ×M times Algorithm 1 , each random invocation outputting a set

Patrick Derbez, Pierre-Alain Fouque and Victor Mollimard 91

denoted Xi,j (i = 1 to N and j = 1 to M). Then a new set is outputted by computing

X =
N⋃

i=1

 M⋂
j=1

Xi,j

 .

2.2 About probabilities
While we could discuss on the interest of this construction, we are only interested by the
probability that xs belongs to the constructed set X.

Grain v1. In [ZXM18], Zhang et al. used the fast near collision technique to mount an
attack against Grain v1. They applied the refined self-contained method to a function f
such that n = 12 and m = 2. They obtained a set X of size 848 and claimed the probability
for xs to belong to X is around 89.64% which is a bit higher than the 848/1024 = 82.81%
expected. Note that here the function f is such that z = f(x) can be rewritten as
z = x1 ⊕ h(x2) and thus, the refined self-contained method was applied on h(x2) = 0. In
particular this means that the search space is restricted without the knowledge of any bit
of keystream.

A5/1. In [Zha19], the function f is such that n = 15 and m = 2. Zhang obtained a set X
of size 7835 and claimed the probability for xs to belong to X is around 99.09% which is
higher than the 7835/8192 = 95.64% expected.

We claim all those claimed probabilities are wrong or, more precisely, cannot be true
without a big enough bias in the initialization phases of both A5/1 and Grain v1. This is
supported by the following theorem:

Theorem 1. Let A be an algorithm which takes as input a function f and an element ks

and outputs a subset X of f−1(ks). Let xs be an element of f−1(ks) drawn uniformly at
random. The probability that xs belongs to X is exactly

|X|/|f−1(ks)|.

The refined self-contained method fulfils the requirements of Theorem 1 but Zhang et
al. claim the set X output by the algorithm contains the secret xs which generated ks

with a good probability. Note that the algorithm can be run before the secret was actually
generated and thus Zhang et al. claim can be invalidated by the following experiment:

1. randomly generate ks

2. run the refined self-contained method on f and ks and obtain the subset X

3. draw xs uniformly at random in f−1(ks)

4. check whether xs belongs to X

Hence, the probabilities given in both [ZXM18] and [Zha19], and by extension the
complexity of corresponding attacks, are quite suspicious. Actually, they would hold if and
only if it is not possible to draw xs uniformly at random in f−1(ks) which would imply
bias in the initialization process.

2.3 Several issues
We found several issues and unreproducible results in both [ZXM18] and [Zha19]. The first
and most important one is about the set outputted by Algorithm 1 and, more precisely,
about its average size and the average probability for the right value to belong to this

92 Fake Near Collisions Attacks

set. For both Grain v1 and A5/1, they were obtained experimentally from unspecified
procedures and do not satisfy Theorem 1. Since Zhang et al. state to have conducted
extensive experiments, either the whole experiments were flawed or the pseudo-random
generators they used were biased.

Another issue lies in the amplifying phase. First the computations are all based on
the wrong results regarding Algorithm 1 and so are unlikely to be correct. But there is
another issue with this phase. Authors used two independent theorems to exhibit the
claimed special behavior of the set X constructed in the amplifying phase: one to compute
the size of X and one to compute the probability for the right value to belong to X. While
using two different avenues to prove two properties on the same set is not important in
regards to the truth of the statement, the theorem they used to compute the size of X
(Statement 1 in this paper) is flawed. As a consequence, there is a decorrelation between
the computation of the probability that X contains the correct value and the computation
of the size X, explaining again the incorrect complexities they found for their attacks.

Statement 1 (Theorem 3 of [ZXM18]). Let V be a set and let draw uniformly at random
a collection (Ui) of subsets of V . Let Fi =

⋃
k≤i

Uk. Then on average the following relation

holds:

|Fi+1| = |Fi|+ |Ui+1| −
|Ui+1|∑

j=0

(|Fi|
j

)
·
(|Fi+1|−|Fi|
|Ui+1|−j

)(|Fi+1|
|Ui+1|

) · j

The sum in the formula is expected to compute the average size of the intersection
between both the sets Fi and Ui+1 and this is where the error lies. The main idea is
correct as they count the number of configurations such that j elements of Ui+1 belong to
Fi and |Ui+1| − j elements do not. But actually, at this point, not in Fi does not mean in
Fi+1 − Fi but means in V − Fi. Indeed, Ui+1 is drawn as a subset of V not as a subset of
Fi+1. Hence the corrected version of the Statement 1 is proposed in Theorem 2.

Theorem 2 (Corrected version). Let V be a set and let draw uniformly at random a
collection (Ui) of subsets of V . Let Fi =

⋃
k≤i

Uk. Then on average the following relation

holds:

|Fi+1| = |Fi|+ |Ui+1| −
|Ui+1|∑

j=0

(|Fi|
j

)
·
(|V |−|Fi|
|Ui+1|−j

)(|V |
|Ui+1|

) · j

In particular, the formula used by Zhang et al. would always underestimate the average
size of set Fi. This fully supports our claiming: to reach the probabilities announced in
both [ZXM18] and [Zha19] the size of the set output by the refined self-contained method
has to be bigger than they expected.

Finally there is a wrong assumption about the right value. More precisely, in both
papers authors assume there is only one right value that will behave differently than the
wrong ones. With enough keystream bits this is true that there is only one internal state
solution. But the fast near collision only uses a small part of the known keystream bits
and so the assumption of only one right value does not hold. For instance, for the attack
against A5/1, the fast near collision technique is applied to only 5 keystream bits and we
show Section 3.3 there are many more right values than only one.

In the next sections, we will show for both Grain v1 and A5/1, the observed deviation
in the probabilities is wrong and will give the corrected complexities of the corresponding
attacks.

Patrick Derbez, Pierre-Alain Fouque and Victor Mollimard 93

3 Fast Near Collisions on A5/1
In this Section we carefully study the attack presented in [Zha19]. We first briefly recall
the design of A5/1 and Golić attack. Then we describe Zhang attack and explain why its
complexity was underestimated.

3.1 Description of A5/1

A5/1 is a stream cipher underlined by a 64-bit internal state. The internal state is composed
of three short linear feedback shift registers (LFSR) of length 19, 22 and 23 bits respectively.
In the rest of the paper we will refer to them as R1, R2, R3. As illustrated in Figure 1, the
feedback taps for each LFSR are positions 13, 16, 17 and 18 for R1, 20 and 21 for R2 and
7, 20, 21 and 22 for R3. Furthermore, each LFSR also possesses a clocking tap at position
8, 10, 10 for respectively R1, R2 and R3, represented with the red arrows in the figure.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Output

Figure 1: Description of A5/1 (source: [Jea16]). The 33 blue bits are the one required to
compute the first 5 keystream bits.

A5/1 uses an asynchroneous clocking regime for the LFSRs: at each clock tick, a LFSR
is clocked if its clock tap value is the majority value between the three clocking taps.

Finally, we review the utilisation of the A5/1 stream cipher during a GSM conversation
session with Algorithm 3, the pseudo code for the generation of the 228 bits of keystream
of one GSM session.

3.2 An attack from Golić
In [Gol97], Golić introduces a clever memory-less attack against A5/1. It is a basic
divide-and-conquer attack recovering the unknown initial state from a known keystream
sequence.

The main idea is quite simple. If, for each of the three LFSRs, one guesses the clock bit
for n (asynchronous) clocks of the LFSRs, we can obtain 3n linear/affine equations. For
instance, for n = 10 it means guessing on the initial state R1[0..8], R2[1..10], R3[1..10] as
well as R1[13]⊕R1[16]⊕R1[17]⊕R1[18]. Furthermore, from those 3n guesses we know the
beginning of the clocking sequence and obtains on average 1 + 4n/3 affine equations from
the knowledge of the keystream bits. Indeed, at each step the probability for a register to
be clocked is 3/4 and as a consequence from the 3n guesses we know on average the clocking
sequence for 4n/3 rounds, leading to the equations R1i[18]⊕ R2i[21]⊕ R3i[22] = zi for
0 ≤ i ≤ 4n/3. Hence, a naive solution would be to accumulate enough equations to solve
the system by inverting a matrix. This would require n to be such that 1 + 4n/3 + 3n ≥ 64,
so n ≥ 14.6. But actually, for n ≥ 10, the equations are not linearly independent, and we
need to increase the number of guesses to make.

94 Fake Near Collisions Attacks

To overcome this issue, Golić proposed a better algorithm close to the early abort
technique [LKKD08]. At each step the adversary guesses/computes the majority bit, gets
the corresponding equation from the corresponding keystream bit and checks whether it
is consistent with the previously obtained equations. If the equation is consistent, the
equation is added to the system, the missing clocking bits are guessed/computed from the
majority bit and the already known clocking bits and the whole state is clocked. This
process is repeated until the system uniquely determines the 64-bit state. Golić showed
that the average complexity of the procedure is around 241.16 simple operations.

3.3 Fast near collisions attack against A5/1

At Asiacrypt’19, Zhang proposed an improved memory-less attack against A5/1, claiming a
time complexity around 231 clocks [Zha19]. Given a sufficiently long sequence of keystream
bits (around 64), he proposed a 2-step procedure to recover the full internal state.

1. The main observation is that 2 consecutive bits of keystream only depend on 15
variables of the internal states. Using the technique described in Section 2.1, Zhang
constructs a set containing approximately 7835 values for the 15 variables and claims
that the probability the value we want is in it to be around 99.09%. Four such sets
are constructed, one for each pair (zi, zi+1) of keystream bits, for i from 0 to 3. Then
a sophisticated merge procedure is applied to construct a set of 216.6 values for the
33 bits of the internal state leading to z0z1z2z3z4. Furthermore, Zhang claims that
the probability for the set to contain the right value is round (0.9909)4 = 96.41%.
Note that 216.6 possibilities is much lower than 233−5 = 228, which is what we would
intuitively expect.

2. The 31 remaining state bits are recovered using the procedure of Golić described
Section 3.2 with few refinements.

3.4 Complexity correction
In this section, we show the time complexity of the attack presented by Zhang at Asi-
acrypt’19 is actually much higher than announced in [Zha19]. More precisely, we show it
is impossible to restrict the number of possible values for the 33 bits of the crucial part
(CP) from 233 to 216.6 using only the 5 first keystream bits without drastically decreasing
the probability of success of the attack. Hence, it turns out Zhang’s attack has the same
complexity than the one of Golić.

Theoretical analysis. As explained in Section 3.3, the attack proposed by Zhang begins
by the recovery of the crucial part (CP) corresponding to 33 bits of the internal state
of A5/1. Those bits are coloured in blue on Figure 1. The only information used in the
procedure to do so is the first five bits of keystream generated from the internal state.

Let x be a randomly chosen value for the CP part and k its corresponding 5-bit
keystream output. In his attack, Zhang claims that from k he can extract a set of 216.6

CP configurations containing x with a very high probability. To invalidate this result we
first make the following proposition:

Proposition 1. Given a 5-bit keystream output k, there are exactly 228 values for the
33 bits of the CP part leading to k.

Proof. The 33 bits of the CP part can be divided into two groups: one composed of 15 bits
(R1[4...8], R2[6..10] and R3[6...10]) used only to determine the clocking sequence and one
composed of 18 bits (R1[13..18], R2[16...21], R3[17..22]) used to generate the keystream
bits. Hence, once the 15 bits of the first group are fixed, the clocking sequence is known

Patrick Derbez, Pierre-Alain Fouque and Victor Mollimard 95

and so each of the five first keystream bits is computed as a linear combination of the 18
bits of the second groups. Furthermore, those 5 linear equations are independent since
each of them depends on at least one bit that does not appear in the other ones (because
at least two registers are clocked each round). Thus, for each possible value of k we have
exactly 218−5 = 213 possible values for the 18 bits of the second groups.

According to Proposition 1, the claim of Zhang would imply that over the 233 possible
values of the 33 bits of the CP part, only a subset of 216.6+5 = 221.6 values (a set of 216.6 for
each of the 25 possible keystream values) can be actually reached after A5/1 initialization,
the remaining ones being reached with marginal probability. While it seems quite obvious
that such a big bias would have already been observed, we ran several experiments to
refute the claim made by Zhang.

Experimental results. We first experimentally verified Proposition 1. We count for each
of the 25 5-bit keystream prefix the number of CP values that generate it. As expected,
we found that for 5 given bits of keystream prefix, there are exactly 228 CP combinations
that generate it.

The second hypothesis we studied was a potential bias in reaching every CP configuration
from the initialization phases of a GSM session. To test this hypothesis, we ran two
experiments, sampling at random the 33-bit CP part after an A5/1 initialization.

Algorithm 2 Experiment
1: sample a 128-bit word key from /dev/rand . Setup
2: initialize a 128-bit word counter at 0
3: initialize a 233 array called configuration;

4: for i = 0 to 236 do . Experiment
5: random = AES-CTR(key, counter) and increase counter
6: extract from random one A5/1-key, keyExp and one A5/1-frame, frameExp
7: do an A5/1 initialization with keyExp and frameExp
8: select the 33-bit of the CP part of the obtained internal state
9: increment the corresponding field in configuration
10: end for

11: Output configuration

For the first one, we simply drawn uniformly at random 236 64-bit keys and 22-bit frame
counters. For each of them we performed the initialization process of A5/1 as detailed in
Algorithm 3 and computed the corresponding value of the 33 bits of interest. To avoid
any bias in the experiment we used AES in CTR mode as source of randomness. For the
sake of clarity and to give more details about the random sampling, we give a pseudo-code
description of the experiments in Algorithm 2.

The second experiment is exactly the same as the first one but the 64-bit key is
composed of 54 random bits and 10 zeroes for its rightmost bits as it was traditionally
done in some system, like comp128v2.

We present in Figure 2 the distribution of occurrences of the 233 possible CP values
for respectively GSM session key of 54 random bits and 64 random bits and for randomly
selected internal states of 64-bit in the form of histograms mapping a value n to the number
of CP configurations (in log scale) that are sampled n times.

No bias as strong as the one presented in the complexity announced by Zhang can be
observed on those representative histograms.

96 Fake Near Collisions Attacks

Figure 2: One diagram represents the number of 33-bit CP part values (in log scale) from
experimental data in ordinates that are reached exactly x times on the horizontal axe.
The experimental data for the two red diagrams are generated as described in Algorithm 2
with 54-bit keys for the left one and 64-bit keys for the right one. The experimental data
of the blue diagram comes from directly randomly generating the 33-bit CP part of the
A5/1 internal state.

Finally, we provide a last experiment definitely showing the attack presented in [Zha19]
is flawed.

1. Randomly generate a 5-bit word ks

2. Run the refined self-contained method to obtain a set X of size 216.6. According
to [Zha19], this set should contain the secret which generated ks with probability
0.9641.

3. Do N times:

(a) Randomly generate a key and a frame counter and run the initialization process
(b) Check whether the first five keystream bits match ks. If not repeat the previous

step.
(c) Check whether the value of the CP part belongs to X.

4. Check whether the experimental probability matches the expected one.

We ran this experiment1 10 times with N = 228 and found the experimental probability
to be very close to 2−11.4, confirming the probability of 0.9641 claimed by Zhang to be far
from the reality.

1Actually at each trial we took for X the set of the 216.6 values reached the most. This highlights the
refined self-contained method is irrelevant and can be replaced by any algorithm outputting a set of size
216.6.

Patrick Derbez, Pierre-Alain Fouque and Victor Mollimard 97

Corrected complexity. With the probability of success corrected, Zhang’s attack
becomes very similar to the one of Golić. The difference is that he would guess 18
extra bits while Golić would have 5 linear/affine equations between those 18 bits and the
keystream. Hence in Zhang attack one would proceed less keystream bits before obtaining
an invertible system of equations and thus more keystream bits should be checked a
posteriori, leading to an attack which cannot be better than Golić one.

4 Fast Near Collisions on Grain v1
In this section, we study the attack proposed at Eurocrypt’18 [ZXM18] in the same way
we did in the previous section for A5/1.

4.1 Description of Grain v1

Grain is a family of stream ciphers that was retained in the eSTREAM portfolio [est09]. In
this paper, we focus on Grain v1 as specified in [HJM07]. This stream cipher is composed
of one LFSR of 80 bits chained with a non-linear feedback shift register (NFSR) of 80 bits.

b79 b78 . . . b1 b0 s79 s78 . . . s1 s0

fg

h∗

output

nfsr lfsr

Figure 3: Simple representation of the grain v1 cipher

At step i, the content of the LFSR is denoted by si, si+1, . . . , si+79 and the content of
the NFSR is denoted by bi, bi+1, . . . , bi+79.

The update function of the LFSR is defined as

si+80 = si+62 ⊕ si+51 ⊕ si+38 ⊕ si+23 ⊕ si+13 ⊕ si,

and the one of the NFSR as

bi+80 = si ⊕ bi+62 ⊕ bi+60 ⊕ bi+52 ⊕ bi+45 ⊕ bi+37 ⊕ bi+33 ⊕ bi+28 ⊕ bi+21 ⊕ bi+14

⊕ bi+9 ⊕ bi ⊕ bi+63bi+60 ⊕ bi+37bi+33 ⊕ bi+15bi+9 ⊕ bi+60bi+52bi+45

⊕ bi+33bi+28bi+21 ⊕ bi+63bi+45bi+28bi+9 ⊕ bi+60bi+52bi+37bi+33

⊕ bi+63bi+60bi+21bi+15 ⊕ bi+63bi+60bi+52bi+45bi+37 ⊕ bi+33bi+28bi+21bi+15bi+9

⊕ bi+52bi+45bi+37bi+33bi+28bi+21.

98 Fake Near Collisions Attacks

At each step, the output bit is computed from 8 bits of the NFSR and 4 bits of the
LFSR as

zi = h(si+3, si+25, si+46, si+64, bi+63)⊕
⊕
k∈A

bi+k,

where h is a boolean function of degree 3 and A = {1, 2, 4, 10, 31, 43, 56}.

The initialization of Grain v1 is described in Algorithm 4. First, the 80-bit key is
loaded into the NFSR and the 64-bit IV into the 64 first bits of the LFSR. Remaining bits
of the LFSR are set to 1. Then, the internal state is clocked 160 times with a re-injection
of the output bits.

4.2 Zhang et al. attack
At Eurocrypt’18, Zhang et al. presented a fast near collisions attack against Grain v1,
claiming a time complexity around 275.7 ticks. Let xi be

⊕
k∈A bi+k so that zi = xi ⊕

h(si+3, si+25, si+46, si+64, bi+63). For each 0 ≤ i < j ≤ 19, they applied the refined self-
contained method together with the amplified phase to (zi, zj) and obtained a subset of
the possible pre-images Xi,j containing the right value with probability p. As xi can be
directly computed from the value keystream bit zi and si+3, si+25, si+46, si+64 and bi+63,
they did not store xi nor xj in the Xi,j . As a result they claim that Xi,j contains on
average 848 elements (over 210) and p = 89.64%.

The next step of the attack is to merge all those 190 sets to get a set X containing
only values leading to the rightful first 20 bits of keystream. They claim that X would
contain on average 26.67 elements and the probability for the right value of the internal
state to be in X would be around p343 = (0.8964)343 = 2−54.09. The time complexity of
the whole attack is then proportional to |X| × p−343.

4.3 Complexity correction
Experimental result on initialization. As for A5/1, we checked whether there are
bias in the initialization phase of Grain v1 which could explain the probability given by
Zhang et al. in [ZXM18]. We have drawn uniformly at random 230 keys and IVs, and for
each them ran the initialization phase. We then looked at the 10 bits going through the
function h to generate the 2 first keystream bits. As expected, we did not notice any bias
in the distribution (see Figure 4).

Theoretical analysis. As explained Section 2.2, assuming all the 2160 possible internal
states are equiprobable, and since the output function is balanced, the probability p for
the right value to belong to Xi,j has to be corrected to 848/1024 = 82.81%. In particular,
the final probability becomes (0.8281)343 = 2−93.32. But actually the whole attack is
flawed. Indeed, since we merge 190 independent sets Xi,j the probability for the right
value to belong to X is p190 and not p343. The mistake made by Zhang et al. lies in
the merging process. First they construct the set X0,1,2 by merging X0,1, X0,2 and X1,2
claiming a probability of p3 which is correct. Then they construct the set X1,2,3 by merging
X1,2, X1,3 and X2,3 claiming a probability of p3 which is also correct. But then they
construct the set X0,1,2,3 by merging X0,1,2, X1,2,3 and X0,3 and claim a probability of
p3 × p3 × p = p7. This is wrong because X0,1,2,3 is actually the merge of only 6 sets, X1,2
being used twice, and the right probability is p6. Thus the corrected probability for the
right value to belong to X is p190 = (0.8281)190 = 2−51.7. Surprisingly this is not so far
from the 2−54.09 claimed by Zhang et al.. But the 20 keystream bits z0 . . . z19 depend
on 118 (linear combinations of) state bits (see Table 5 in [ZXM18]). Thus, according to
Theorem 1, to reach such probability the set X has to contain 2118−20 × 2−51.7 = 247.3

elements and not only 26.67. As a consequence, the overall complexity of the attack is

Patrick Derbez, Pierre-Alain Fouque and Victor Mollimard 99

Figure 4: Histogram plotting how many times each of the 210 possible two successive
input of the function h were reached after 230 Grain v1 initialization using random key
and iv values.

increased by a factor 247.3+51.7−6.67−54.09 = 237.24, making it slower than an exhaustive
search.
Experimental result on p. Finally, as for A5/1 we provide the following experiment to
support our claim regarding the correct complexity of the attack presented in [ZXM18].

1. Randomly generate a 3-bit word ks

2. Run the refined self-contained method to obtain a set X of size 214.2 which should
contain the secret which generated ks with probability (0.8964)3 = 0.7203 according
to Zhang et al..

3. Do N times:

(a) Randomly generate a key and an IV and run the initialization process.
(b) Check whether the first three keystream bits from the current internal state

match ks. If not repeat the previous step.
(c) Check whether the value of the internal state part belongs to X.

4. Check whether the experimental probability matches the expected one.

We ran this experiment2 10 times with N = 226 and found the experimental probability
to be very close to (0.8281)3 = 0.5679, confirming the inaccuracy of the probability 0.7203
claimed by Zhang et al.. To ensure that the initialization process does not introduce
and/or remove any biases, we repeated 10 times the experiment for random states during
the keystream generation phase too. In more details, we sampled R < 210 and before
generating the three keystream bits, we updated by R rounds the internal state. As
expected, none of those experiments supported Zhang et al. claimed probability.

5 Conclusion
In this paper, we have shown the fast near collision attacks on both A5/1 and Grain v1
were flawed. More precisely, we have shown that the refined self-contained method cannot

2As for A5/1, we simply took for X the set of size 214.2 composed of the values reached the most during
the experiment.

100 Fake Near Collisions Attacks

magically restrict the search space and that all the probabilities related to the technique
were overestimated. Once corrected, both those attacks do not improve on any previously
known attacks. In the case of Grain v1, the overall complexity of the attack becomes
much higher than for an exhaustive search of the key. Regarding A5/1, the attack becomes
worst than Golić’s one.

There are still mysteries about both [ZXM18] and [Zha19]. In particular, authors seem
to have experimentally verified their claimed probabilities. They wrote they have done a
large number of experiments ... and almost all the experimental results conform to our
theoretical predictions. This statement is quite unlikely. Indeed, it was enough to add
a loop in the publicly available C codes of their works to observe the deviation in the
claimed probabilities.

Finally, we think it is important and crucial to evaluate and correct previous scientific
works.

References
[BGHB11] Gilles Barthe, Benjamin Grégoire, Sylvain Heraud, and Santiago Zanella

Béguelin. Computer-Aided Security Proofs for the Working Cryptographer.
In Phillip Rogaway, editor, Advances in Cryptology - CRYPTO 2011 - 31st
Annual Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2011.
Proceedings, volume 6841 of Lecture Notes in Computer Science, pages 71–90.
Springer, 2011.

[BGLB11] Gilles Barthe, Benjamin Grégoire, Yassine Lakhnech, and Santiago Zanella
Béguelin. Beyond Provable Security Verifiable IND-CCA Security of OAEP. In
Aggelos Kiayias, editor, Topics in Cryptology - CT-RSA 2011 - The Cryptogra-
phers’ Track at the RSA Conference 2011, San Francisco, CA, USA, February
14-18, 2011. Proceedings, volume 6558 of Lecture Notes in Computer Science,
pages 180–196. Springer, 2011.

[BGW99] Marc Briceno, Ian Goldberg, and David Wagner. A pedagogical implementation
of A5/1. Technical report, May 1999. Available at http://www.scard.org.

[BR94] Mihir Bellare and Phillip Rogaway. Optimal asymmetric encryption. In Al-
fredo De Santis, editor, Advances in Cryptology - EUROCRYPT ’94, Workshop
on the Theory and Application of Cryptographic Techniques, Perugia, Italy,
May 9-12, 1994, Proceedings, volume 950 of Lecture Notes in Computer Science,
pages 92–111. Springer, 1994.

[CPS08] Jean-Sébastien Coron, Jacques Patarin, and Yannick Seurin. The Random
Oracle Model and the Ideal Cipher Model Are Equivalent. In David A. Wagner,
editor, Advances in Cryptology - CRYPTO 2008, 28th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2008. Proceed-
ings, volume 5157 of Lecture Notes in Computer Science, pages 1–20. Springer,
2008.

[est09] The eSTREAM project. https://www.ecrypt.eu.org/stream/project.
html, 2009.

[FOPS01] Eiichiro Fujisaki, Tatsuaki Okamoto, David Pointcheval, and Jacques Stern.
RSA-OAEP is secure under the RSA assumption. In Joe Kilian, editor,
Advances in Cryptology - CRYPTO 2001, 21st Annual International Cryptology
Conference, Santa Barbara, California, USA, August 19-23, 2001, Proceedings,
volume 2139 of Lecture Notes in Computer Science, pages 260–274. Springer,
2001.

http://www.scard.org
https://www.ecrypt.eu.org/stream/project.html
https://www.ecrypt.eu.org/stream/project.html

Patrick Derbez, Pierre-Alain Fouque and Victor Mollimard 101

[Gol97] Jovan Dj Golić. Cryptanalysis of alleged A5 stream cipher. In International
Conference on the Theory and Applications of Cryptographic Techniques, pages
239–255. Springer, 1997.

[Gra01] Louis Granboulan. Flaws in differential cryptanalysis of skipjack. In Inter-
national Workshop on Fast Software Encryption, pages 328–335. Springer,
2001.

[HJM07] Martin Hell, Thomas Johansson, and Willi Meier. Grain: a stream cipher for
constrained environments. IJWMC, 2(1):86–93, 2007.

[HJMM06] Martin Hell, Thomas Johansson, Alexander Maximov, and Willi Meier. A
Stream Cipher Proposal: Grain-128. In Proceedings 2006 IEEE International
Symposium on Information Theory, ISIT 2006, The Westin Seattle, Seattle,
Washington, USA, July 9-14, 2006, pages 1614–1618. IEEE, 2006.

[HKT11] Thomas Holenstein, Robin Künzler, and Stefano Tessaro. The equivalence
of the random oracle model and the ideal cipher model, revisited. In Lance
Fortnow and Salil P. Vadhan, editors, Proceedings of the 43rd ACM Symposium
on Theory of Computing, STOC 2011, San Jose, CA, USA, 6-8 June 2011,
pages 89–98. ACM, 2011.

[IIMP19] Akiko Inoue, Tetsu Iwata, Kazuhiko Minematsu, and Bertram Poettering.
Cryptanalysis of OCB2: Attacks on Authenticity and Confidentiality. In
Alexandra Boldyreva and Daniele Micciancio, editors, Advances in Cryptology
- CRYPTO 2019 - 39th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 18-22, 2019, Proceedings, Part I, volume 11692 of
Lecture Notes in Computer Science, pages 3–31. Springer, 2019.

[Jea16] Jérémy Jean. TikZ for Cryptographers. https://www.iacr.org/authors/
tikz/, 2016.

[KRW99] Lars R Knudsen, Matthew JB Robshaw, and David Wagner. Truncated
differentials and skipjack. In Annual International Cryptology Conference,
pages 165–180. Springer, 1999.

[LKKD08] Jiqiang Lu, Jongsung Kim, Nathan Keller, and Orr Dunkelman. Improving
the Efficiency of Impossible Differential Cryptanalysis of Reduced Camellia
and MISTY1. In Tal Malkin, editor, Topics in Cryptology - CT-RSA 2008,
The Cryptographers’ Track at the RSA Conference 2008, San Francisco, CA,
USA, April 8-11, 2008. Proceedings, volume 4964 of Lecture Notes in Computer
Science, pages 370–386. Springer, 2008.

[Mur11] Sean Murphy. The return of the cryptographic boomerang. IEEE Transactions
on Information Theory, 57(4):2517–2521, 2011.

[Sho01] Victor Shoup. OAEP reconsidered. In Joe Kilian, editor, Advances in Cryptol-
ogy - CRYPTO 2001, 21st Annual International Cryptology Conference, Santa
Barbara, California, USA, August 19-23, 2001, Proceedings, volume 2139 of
Lecture Notes in Computer Science, pages 239–259. Springer, 2001.

[WKD07] Gaoli Wang, Nathan Keller, and Orr Dunkelman. The delicate issues of
addition with respect to xor differences. In International Workshop on Selected
Areas in Cryptography, pages 212–231. Springer, 2007.

[Zha19] Bin Zhang. Cryptanalysis of GSM Encryption in 2G/3G Networks Without
Rainbow Tables. In International Conference on the Theory and Application
of Cryptology and Information Security, pages 428–456. Springer, 2019.

https://www.iacr.org/authors/tikz/
https://www.iacr.org/authors/tikz/

102 Fake Near Collisions Attacks

[ZXM18] Bin Zhang, Chao Xu, and Willi Meier. Fast Near Collision Attack on the
Grain v1 Stream Cipher. In Jesper Buus Nielsen and Vincent Rijmen, editors,
Advances in Cryptology - EUROCRYPT 2018 - 37th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Tel
Aviv, Israel, April 29 - May 3, 2018 Proceedings, Part II, volume 10821 of
Lecture Notes in Computer Science, pages 771–802. Springer, 2018.

A Attached codes
The source codes of all our experiments is available in the public git repository:

https://gitlab.inria.fr/vmollima/a5-1sac.git

B Algorithms

Algorithm 3 The procedure used during a GSM session to generate 128 bits of keystream
1: P = (F, K) = (P85, . . . , P0) an 86-bit word composed of a 64-bit key K and a 22-bit

frame F

2: for i = 0 to 85 do . Initialization
3: R1[0], R2[0], R3[0]← R1[0]⊕ Pi, R2[0]⊕ Pi, R3[0]⊕ Pi

4: clock R1, R2, R3 simultaneously
5: end for
6: for i = 0 to 99 do
7: clock R1, R2, R3 asynchronously
8: end for

9: for i = 0 to 227 do . Keystream generation
10: zi = R1[18]⊕R2[21]⊕R3[22]
11: clock R1, R2, R3 asynchronously
12: end for

13: Output z = (z227, . . . , z0) . the keystream

https://gitlab.inria.fr/vmollima/a5-1sac.git

Patrick Derbez, Pierre-Alain Fouque and Victor Mollimard 103

Algorithm 4 The initialization procedure and keystream generation of Grain v1
1: key a 80-bit key . Parameters
2: iv a 64-bit initial value

3: Load key in . Initialization
4: Load iv in
5: for i = 0 to 15 do
6: si ← 1
7: end for
8: for i = 0 to 159 do
9: compute o = h∗(s79, s54, s33, s15, b16, b78, b77, b75, b69, b48, b36, b23)
10: clock the LFSR and the NFSR with the following respective feedback bits:
11: f(s79, s66, s56, s41, s28, s17)⊕ o
12: g(b16, b17, b19, b27, b34, b42, b46, b51, b58, b64, b65, b70, b79)⊕ s79 ⊕ o
13: end for

14: for i do . Keystream generation
15: compute zi = h∗(s79, s54, s33, s15, b16, b78, b77, b75, b69, b48, b36, b23)
16: clock the LFSR and the NFSR with the following respective feedback bits:
17: f(s79, s66, s56, s41, s28, s17)
18: g(b16, b17, b19, b27, b34, b42, b46, b51, b58, b64, b65, b70, b79)⊕ s79
19: end for

20: Output {zi}i . the keystream

Algorithm 5 Observation of distribution after Grain v1 initialization
1: Sample a 128-bit word key from /dev/rand . Setup
2: Initialize a 128-bit word counter at 0
3: Initialize a 210 array called configuration

4: for i = 0 to 230 do . Experiment
5: Use AES-CTR(key, textsccounter) two 64-bit word called IVExp and keyExp
6: Sample a random integer random from /dev/rand
7: Use AES-CTR(key, ctr + random) to add 16-bit to keyExp
8: Do a Grain v1 initialization with keyExp and IVExp
9: Collect the 5 input bits of h in a variable result
10: Clock one more time the internal state
11: Add the 5 new input bit of h to result
12: Increment configuration[result]
13: end for

14: Output: configuration

	Introduction
	Fast Near Collision
	The refined self-contained method
	About probabilities
	Several issues

	Fast Near Collisions on A5/1
	Description of A5/1
	An attack from Golic
	Fast near collisions attack against A5/1
	Complexity correction

	Fast Near Collisions on Grain v1
	Description of Grain v1
	Zhang et al. attack
	Complexity correction

	Conclusion
	Attached codes
	Algorithms

