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Abstract. In this paper we propose new techniques related to division property. We
describe for the first time a practical algorithm for computing the propagation tables
of 16-bit Super-Sboxes, increasing the precision of the division property by removing a
lot of false division trails. We also improve the complexity of the procedure introduced
by Lambin et al. (Design, Codes and Cryptography, 2020) to extend a cipher with
linear mappings and show how to decrease the number of transitions to look for.
While search procedures for integral distinguishers most often rely on MILP or SAT
solvers for their ease of programming the propagation constraints, such generic solvers
can only handle small 4/8-bit Sboxes. Thus we developed an ad-hoc tool handling
larger Sboxes and all the improvements described in the paper. As a result, we found
new integral distinguishers on SKINNY-64, HIGHT and Midori-64.
Keywords: Division property · SKINNY · Midori · HIGHT · Tools

1 Introduction
Integral cryptanalysis exploits distinguishers computing the sum of ciphertexts corre-
sponding to a set of plaintexts spanning a linear subspace. This technique was originally
introduced by Knudsen in [DKR97] as a specific attack against the byte-oriented structure
of the block cipher SQUARE. In 2000, Ferguson et al. [FKL+00] presented at FSE powerful
attacks based on integral distinguishers against round-reduced versions of AES, named
Partial Sum attacks. In particular they described a practical attack against 6 rounds
which is still one of the best known attacks against AES. Integral distinguishers were found
by propagating through the round functions simple properties on words composing the
internal states: ALL (the word takes all the possible values once), BALANCED (the word
sums to zero), CONSTANT (the value of the word is constant).

The so-called division property, introduced by Todo at Eurocrypt’15 [Tod15], is a
method to find more sophisticated integral distinguishers. The idea behind the division
property technique is actually quite simple. Let f and g be two n-bit functions and assume
the goal is to find an integral distinguisher on g ◦ f without computing it explicitly. Let
yi = fi(x0, . . . , xn−1) and zi = gi(y0, . . . , yn−1) be the intermediate and final expressions
of the coordinate functions of f and of g, and let mz be a monomial in the zi’s, and so
mz is a polynomial in some my monomials. Division property actually captures that if
for a subset X of Fn2 each monomial my appearing in mz satisfies

⊕
x∈X my(x) = 0 then⊕

x∈X mz(x) = 0. Several variants of this property were used to find integral distinguishers.
For instance, in [TM16], Todo and Morii used that if all monomials my but one sum to
zero then

⊕
x∈X mz(x) = 1. And more recently, in both [HLM+20] and [HLLT20], the

exact relation was used:
⊕

x∈X mz(x) = 0 if and only if the number of monomials my for
which

⊕
x∈X my(x) = 1 is even.

∗Patrick Derbez and Pierre-Alain Fouque were supported by the French Agence Nationale de la
Recherche through the CryptAudit project under Contract ANR-17-CE39-0003.

Licensed under Creative Commons License CC-BY 4.0.
Received: 2020-09-01 Accepted: 2020-11-01 Published: 2020-12-10

https://doi.org/10.46586/tosc.v2020.i4.173-194
mailto:patrick.derbez@irisa.fr,pierre-alain.fouque@irisa.fr
http://creativecommons.org/licenses/by/4.0/


174 Increasing Precision of Division Property

In practice we cannot try all possible sets X nor compute the corresponding sums for
all monomials involved in the description of a cryptographic primitive. Furthermore we
typically want integral distinguishers independent from the key, adding an extra complexity
to the problem. However it is easy to show that if P is a polynomial in variables (x1, . . . , xn)
then

⊕
(x1,...,xi)∈Fi

2
P (x1, . . . , xn) = 0 for each value of (xi+1, . . . , xn) if and only if P does

not involve a monomial containing all the variables x1, . . . , xi. This property can be
understood more easily using higher-order differential and means that if we derive i
times w.r.t. to the i first variables, a multivariate polynomial P that does not contain a
monomial involving the x1x2 . . . xi monomial, then we get the 0 polynomial. Thus integral
distinguishers are highly related to the maximal monomials involved in a polynomial and
division property can be seen as a method to track them through an iterated function.

Searching for integral distinguishers. The main difficulty is to efficiently modelize
the propagation of division property through the round functions of a cipher. Except
in [TM16] where Todo and Morii used an ad-hoc tool to exhaust division trails on SIMON-32,
searching for integral distinguishers usually relies on generic solvers for MILP, SAT or
SMT models. In [XZBL16] Xiang et al. show that it is possible to describe transitions
through small Sboxes with inequalities by computing the convex hull of points. This work
has been extended by Zhang and Rijmen [ZR19] to binary linear mapping. Eskandari et al.
in [EKKT18] have built a tool called Solvatore to find such division property trails using
a SAT solver and found many new integral distinguishers. The difficulty of the search
procedure depends on the cipher and on the variant of division property implemented.
The original variant is the simplest to search for but is also the less accurate as it may
miss some cancellations of monomials and thus miss distinguishers. In [HLLT20], Hebborn
et al. worked with the exact variant and described a new method dedicated to (small)
block cipher aiming at proving that for each linear combination of the ciphertext bits
and for each degree n − 1 monomial in the plaintexts bits, there is at least one key
(considering independent round keys) for which the monomial appears in the ANF of
the linear combination. They used a heuristic approach to find round keys for which
evaluating the parity of division trails is the cheapest. As a result they found that 13-round
SKINNY-64, 11-round Gift and 11-round PRESENT are all immune to integral distinguishers
if considering independent round keys.

Our Contributions.
In this paper, our contributions are three-fold.

i) Our main idea is to increase the precision of the original division property. To this
end, we want to handle larger Sboxes than the typical 4/8-bit Sboxes block ciphers
are usually composed of. More precisely, we want to handle Super-Sboxes to cover two
layers of Sboxes in one operation. Hence, in this paper we propose a new algorithm
to compute the so-called propagation table associated to a Super-Sbox. Our algorithm
computes the propagation table corresponding to a collection of k n-bit permutations
in O(nk22n + 23n) simple operations while applying k times the classical algorithm
would lead to a complexity in O(k23n).

ii) MILP and SAT solvers seem to be unable to efficiently handle such large propagation
tables and we decided to implement an ad-hoc tool to this end, based on a classical
branch-and-bound. To the best of our knowledge, this is the first time an ad-hoc
approach can practically search for division trails on 64-bit block ciphers without
relying on generic solvers. It is well-known that MILP and SAT solvers make easier
the development of tools, but they also have caveats such as it is hard to predict their
running time and it is also hard to reverse engineer the algorithmic techniques they
used to speedup the running time. For cryptanalysts, such generic tools give a first
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Table 1: Summary of the best integral distinguishers found by our tool. Note that in our
case, a distinguisher against a cipher E means we found two linear mappings Lin and Lout
and a distinguisher against Lout ◦ E ◦ Lin.

Cipher Rounds Data Ref.

Midori-64

6 248 [EKKT18]
215 6.1

7 263 [ZR19]
245 6.1

9 263 6.1

SKINNY-64

8 215 6.2

10 248 [EKKT18]
247 6.2

11 263 6.2

HIGHT 19 263 [FTIM19]
20 263 6.3

good approximation or solution, but it is always interesting to better understand how
they have been able to find the solutions.

iii) We also provide several new algorithms which may improve all previous models related
to division property. First we show how to remove some unnecessary elements from
a chain of propagation tables describing a cipher. This restricts the search space
and decreased the running time of our tool up to factor 3. We provide as well new
algorithms to add linear mappings around the cipher to extend the search space of
division trails. Indeed, contrary to differential or linear cryptanalysis, integral division
property attack are not invariant under linear mapping and Lambin et al. in [LDF20]
have shown that considering linear mappings at the beginning and end of the cipher
may allow to find integral distinguishers covering more rounds. In particular our new
algorithms have a much better time complexity than the ones introduced in [LDF20]
since for an m-bit Sbox we only have to consider 2m mappings while Lambin et al.
had to consider O

(
2m2) of them.

As a result, we found new integral distinguishers against the three blockciphers
SKINNY-64 [BJK+16], Midori-64 [BBI+15] and HIGHT [HSH+06], increasing the num-
ber of rounds covered compared to previously best known integral distinguishers. We also
experimentally verified some distinguishers found on smaller instances in order to validate
our tool. For instance, we searched for low data distinguishers by fixing some input bits of
the Super-Sboxes to constant and we found an integral distinguishers requiring only 215

chosen plaintexts against both 8-round SKINNY-64 and 6-round Midori-64. All the results
found by our tool are given in Table 1.

The C++ code of our ad-hoc tool is available at

https://gitlab.inria.fr/pderbez/divlin

For now it handles any 64-bit function which can be written as fR ◦ σ ◦ . . . ◦ σ ◦ f0
where σ is a permutation operating at the nibble level and where the fi’s are parallel
applications of four 16-bit to 16-bit functions, eventually depending on a round key. This
includes a large set of ciphers as TWINE, Gift, HIGHT, . . . .

https://gitlab.inria.fr/pderbez/divlin
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Organization of the paper.
Section 2 contains the notations and definitions and Section 3 some related works. In
Section 4 we present new techniques, including an algorithm to compute the propagation
table of a Super-Sbox. In Section 5 we describe our ad-hoc tool to search for integral
distinguishers. Finally, Section 6 contains our new results against the block ciphers
SKINNY-64, Midori-64 and HIGHT.

2 Preliminaries
In this section, we give the notations and definitions we will use in this paper. We also
introduce division property based distinguishers on block cipher.

2.1 Notations and Definitions
We denote x = (x0, . . . , xn−1) ∈ Fn2 an n-bit vector, where x0 is the least significant bit
and will often write x0x1 . . . xn−1 instead of (x0, . . . , xn−1). There is a trivial mapping
from n-bit vectors to monomials in variables (X0, . . . , Xn−1) and we will often refer to x
as a monomial.

Definition 1. We say that a monomial m0 contains a monomial m1 if and only if all
the variables of m1 belong to m0, i.e. if and only if m1 is a divisor of m0. In that case
we will write m1 �m0. For instance, x0 � x0x1 but x2 � x0x1.

Definition 2. Given a set s of monomials, we denote by max(s) (resp. min(s)) the set of
the maximal (resp. minimal) monomials of s.

Note that given a set s of n monomials, building max(s) (resp. min(s)) requires at most
n× |max(s)| (resp. n× |min(s)|) comparisons and is upper bounded by n2. Furthermore,
both operators min and max can be easily extended to polynomials over F2 since they can
be seen as set of monomials.

Definition 3 (Bit-product). For x,u ∈ Fn2 , we denote by xu the bit product

xu =
n−1∏
i=0

xui
i .

Definition 4 (Bit-based Division Property [TM16]). A set X ⊂ Fn2 has the division
property Dn

K, where K ⊂ Fn2 is a set, if for all u ∈ Fn2 , we have

⊕
x∈X

xu =
{
unknown if there is k ∈ K s.t. u � k

0 otherwise

2.2 Integral Distinguishers
Basically, the division property is a tool to track the monomials through the successive
applications of a round function. Given a block cipher, let Pb(X0, . . . Xn−1,K0, . . . ,Km−1)
be the polynomial describing the b-th bit of the ciphertext as a function of the plaintext (X)
and the master key (K). If no monomial greater than or equal to X0X1 . . . Xi−1 appears
in Pb then for any value y of (Xi, . . . , Xn−1,K0, . . . ,Km−1) we have that⊕

x∈{0,1}i

Pb(x,y) = 0,



Patrick Derbez and Pierre-Alain Fouque 177

which is a property a random function should not have. However, in practice we cannot
computationally obtain the polynomial expression of all the bits of the ciphertext because
the number of terms is too huge. Hopefully the division property tackles down this
problem. Let f and g be two n-bit functions and let yi = fi(x0, . . . , xn−1) and zi =
gi(y0, . . . , yn−1) = gi ◦ f(x0, . . . , xn−1) be the intermediate and final expressions of the
coordinate functions of f and g respectively. Division property captures that if for all
monomials yv appearing in zu, yv does not involve a monomial greater than xw then
zu (now seen as a function of the xi’s) does not involve a monomial greater than xw too.
Hence, a common way to study division property for a block cipher is to study the division
trails of this cipher, which show the propagation of the division property through the basic
operations composing the block cipher.

Definition 5 (Division Trails [XZBL16]). Let f denote the round function of an iterated
block cipher. Assume the input set to the block cipher has initial division property Dn

{k},
and denote the division property after propagating through i rounds of the block cipher
(i.e. i applications of f) by Dn

Ki
. Thus, we have the following chain of division property

propagations :
{k} ∆= K0

f−→ K1
f−→ K2

f−→ . . .
f−→ Kr.

Moreover, for any vector ki in Ki (i ≥ 1), there must exist a vector ki−1 in Ki−1 such that
ki−1 can propagate to ki by the division property propagation rules, i.e. fki contains a
monomial m such that m � ki−1. Furthermore, for (k0,k1, . . . ,kr) ∈ K0 ×K1× · · · ×Kr,
if ki−1 can propagate to ki for all i ∈ {1, 2, . . . , r}, (k0,k1, . . . ,kr) is called an r-round
division trail.

In the rest of the paper, we will denote k
f→ k′ if the vector k ∈ Fn2 can propagate to a

vector k′ ∈ Fm2 through the n-bit to m-bit function f .

Proposition 1 ([XZBL16]). Assume X is a set with division property Dn
K, then X does

not have integral property if and only if K contains all the n unit vectors. As a result, if
the i-th unit vector does not belong to K, then the i-th bit is balanced.

This proposition is the core of the division property technique. Given an n-bit to n-bit
function f and x ∈ Fn2 , if there is no division trail through f from x to the i-th unit vector
then it means that monomial x does not divide any of the monomials involved in the anf
of the i-th coordinate function fi and thus there is an integral distinguisher on fi.

3 Related Works
In this section we recall some previous works our paper is based on.

3.1 Propagation Table
At ASIACRYPT’16, Xiang et al. [XZBL16] proposed an algorithm to compute the propa-
gation table of an n-bit to n-bit function f . The propagation table of f is a table T such
that for any m ∈ Fn2 , T [m] contains all possible monomials m′ such that the transition
m

f→m′ is valid, fully describing the propagation rules through f . In other words, the
propagation table of a function f is a table mapping any monomial m to the list of vectors
u ∈ {0, 1}n such that the polynomial fu contains a monomial m′ satisfying m �m′.

The algorithm building the propagation table is quite simple. It computes all the
product fu, finds all the monomials included in at least one monomial of fu and adds u
to the corresponding lines. At the end, each line of the table is reduced based on the fact
that minimal monomials are sufficient to characterize the division property.
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Algorithm 1: Building propagation table
Data: an n-bit to n-bit function f
Result: T the propagation table associated to f
init T as empty
foreach u ∈ {0, 1}n do // 2n

compute the anf of fu // O(n2n)
foreach monomial m contained in a monomial of fu do // O(22n)

T [m] = T [m] ∪ {u}
end

end
foreach m ∈ {0, 1}n do // 2n

T [m] = min(T [m]) // O(22n)
end
return T

The exact complexity of the algorithm to produce the propagation table is hard to
compute, as it depends on the function f and more precisely on the number of terms each
coordinate function is composed of. In the worst case it is O(23n) simple operations. It is
depicted in Algorithm 1.

3.2 Linear Mappings at Input and Output
In [LDF20], Lambin et al. show that for a given block cipher E, we should consider
Lout ◦ E ◦ Lin, where both Lout and Lin are linear mappings, since division property is
not linearly invariant. This may lead to new distinguishers but the drawback is that the
search space is greatly increased. For instance, let fk be the encryption function

fk(x, y) = (p0(k)x⊕ p1(k)y, p2(k)x⊕ p3(k)y)

where p0, . . . , p3 are non-zero polynomials. In that case classical application of division
property would conclude that no output bit is balanced. But if either p0 = p2 or p1 = p3
then the xor of both output bits is balanced.

The idea proposed by Lambin et al. is, given an n-bit function f , to generate all the
possible invertible n×n matrices and to compose them with f . Then all the corresponding
propagation tables are built. From there, several matrices may lead to the same propagation
table and so one may consider classes of equivalence to reduce the search space. However,
the number of invertible matrices is around O(2n2), and it seems very complicated to
go much further than n = 6. Hence they restrict themselves to cases where the linear
mapping Lin (resp. Lout) is applied in front (resp. back) of a 4-bit sbox.

As a result, they show that 10-round RECTANGLE [ZBL+15] can be distinguished while
previous best known distinguishers could not target more than 9 rounds.

Remark. Actually they do not run 2n2 × 2n2 = 22n2 times the search procedure. For
each invertible matrix they combine it to the sbox and compute its propagation table.
Then if two matrices lead to the same propagation table they only have to try one of them
since both would lead to the same result.

4 Advanced Division Property Search
In this section we present our new ideas to improve division property based search
procedures for integral distinguishers.
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4.1 Reducing Propagation Tables
Since searching for integral distinguisher boils down to exhausting all the possible trails
which reach a unit vector, its complexity directly depends on the number of possible trails.
We saw in previous sections that if both trails m0

f−→m1 and m0
f−→m′

1 are valid and
if m′

1 �m1, then we can consider only the second one. This property allows to reduce
the number of elements stored in the propagation tables and to decrease the number of
possible trails to try in order to find integral distinguishers. Note that this property is
local to a function. However, in practice, we search for trails through the composition of
many functions and we propose to go further.

Let f = f1 ◦ σ ◦ f0 be a 4n-bit function where for i ∈ {0, 1} we have:

• f i(a0, a1, a2, a3) = (f i0(a0, a1), f i1(a2, a3)), f i0 and f i1 being two 2n-bit functions,

• σ the permutation σ(a0, a1, a2, a3) = (a0, a2, a1, a3).

Our objective is to study division trails through f :

x0 f0
0−→

y0 y0 f1
0−→

z0

x1 y1 y2 z1

x2 f0
1−→

y2 y1 f1
1−→

z2

x3 y3 y3 z3

Our idea is to remove unnecessary elements from both propagation tables Tf0
0
and Tf0

1

of f0
0 and f0

1 respectively. Let Y2 and Y3 be the sets containing all the possible values
for y2 and y3 respectively as output of Tf0

1
and let (y0,y1) and (y′

0,y
′
1) be two outputs

of Tf0
0
. We say that (y0,y1) is smaller than (y′

0,y
′
1) if and only if both the following

conditions are satisfied:

• for all y2 ∈ Y2, for all u′ ∈ Tf1
0
[y′

0 ‖ y2], there is u ∈ Tf1
0
[y0 ‖ y2] such that u � u′

• for all y3 ∈ Y3, for all u′ ∈ Tf1
1
[y′

1 ‖ y3], there is u ∈ Tf1
1
[y1 ‖ y3] such that u � u′

This means that for all trails going through (y′
0,y

′
1), there is a trail going through (y0,y1)

reaching a smaller output after f1. Hence the propagation table of f0
0 can be reduced

using this (partial) order by keeping only the minimal elements on each line.
This order can be easily extended recursively to more rounds added at the beginning.

Constructing the sets Yi is free as it can be done while constructing the propagation tables.
Then at each step we only need to remember whether yi is smaller than y′

i or not.

In practice we found this technique to be very efficient to remove elements in the
propagation tables. For instance on SKINNY-64 using this technique decreases the running
time of our tool up to a factor 3.

4.2 Larger Tables and Super-Sboxes
For many SPN-based block ciphers, the internal state is a 4× 4 matrix of cell (typically 4
or 8 bits) and the round function is the composition of:

• a SubCells (SC) operation, applying the same Sbox to each cell independently;

• a MixColumns (MC) operation, applying a linear transformation on each column
independently;

• a AddRoundKey (ARK) operation, xoring the round key to the internal state;
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• a CellsPerm (CP) operation, permuting the cells of the internal state.

Typically, the search of integral distinguishers is done by exhausting trails going through
each layer successively. But given an n-bit function, Algorithm 1 produces the propagation
table in roughly O(23n) operations which is practical up to n ≈ 16. Hence it seems possible
to improve the precision of the propagation by considering 16-bit Sboxes, and more precisely
Super-Sboxes. Since all operations except the cell permutation act on column and since
SC ◦ CP = CP ◦ SC, two rounds can be rewritten as CP ◦ARK ◦MC ◦ CP ◦ SSC
where SSC acts on each column independently.

Our idea is to build the propagation table for each of the 4 parts of the SSC operation.
Because of the key addition between the two layers of Sboxes, a naive approach would
require to run Algorithm 1 for all possible values of the (part of) round key used in
the Super-Sbox and then merge the propagation tables. This would quickly make the
computation untractable. Instead we propose a new version of Algorithm 1, taking as
input a collection of k n-bit functions and outputing the propagation table containing all
the valid transitions for at least one of the function. This is described in Algorithm 2 and
the time complexity of this algorithm is in O(kn22n + 23n). Note that typical value for k
is 2n and so our algorithm has complexity O(n23n), to be compared to O(24n), the cost of
calling 2n times Algorithm 1.

Algorithm 2: Building propagation table of a collection of functions
Data: a collection F of k n-bit to n-bit functions
Result: T the propagation table associated to F
init T as empty
foreach f ∈ F do // k

foreach u ∈ {0, 1}n do // 2n
compute the anf of fu // O(n2n)
foreach monomial m of fu do // O(2n)

T [m] = T [m] ∪ {u}
end

end
end
for d from n− 1 to 0 do

foreach monomial m of degree d do // 2n
foreach monomial m′ of degree d+ 1 such that m �m′ do // O(n)

T [m] = T [m] ∪ T [m′]
end
T [m] = min(T [m]) // O(22n)

end
end
return T

The core idea of our algorithm is to first compute all the products for all the n-bit
functions and to store u in T [m] only if the monomial m appears in one of the polynomials
fu while, in Algorithm 1, u is stored whenever one monomial contains m. Only then the
table is completed and reduced. A naive approach to do so would be to go through each
monomial m′, to add T [m′] to T [m] for each monomial m �m′ and finally to reduce
the table. But we can notice that if three monomials m, m′ and m′′ satisfy the relation
m �m′ �m′′ we would do:

1. T [m]← T [m] ∪ T [m′], T [m]← T [m] ∪ T [m′′], T [m′]← T [m′] ∪ T [m′′]

2. T [m]← min(T [m]), T [m′]← min(T [m′]), T [m′′]← min(T [m′′])
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Organizing the computation according to the degree of monomials we can remove one step,
and perform operations on smaller sets:

1. T [m′′]← min(T [m′′])

2. T [m′]← T [m′] ∪ T [m′′]

3. T [m′]← min(T [m′])

4. T [m]← T [m] ∪ T [m′]

5. T [m]← min(T [m])

We successfully ran this algorithm to generate the propagation tables associated
to Super-Sboxes of many block ciphers, including for instance SKINNY-64 [BJK+16],
Midori-64 [BBI+15] and PRESENT [BKL+07].
Remark 1. Note that the complexity n23n is an upper bound which is never reached
in practice. Furthermore all operations are very simple, sequential (cache-friendly) and
easy to vectorize and parallelize. Hence the algorithm is practical for 16-bit Super-Sboxes
and for instance it requires less than an hour on a 128-core server to build the table for
Midori-64.
Remark 2. We emphasize our construction does not lead to weak-key distinguishers.
Indeed, the table contains a transition if and only if it is valid for at least one key and, for
division property, there exists a distinguisher if and only if there is no valid trail.

4.3 Linear Mapping at the Output
As explained in Section 3.2, in [LDF20] Derbez et al. suggested to compose the last round
with an invertible matrix to extend the distinguishers we can search for. But since we are
looking for integral distinguishers, we are only interested in knowing whether the i-th bit
of the output is balanced or not. Hence there is no reason to consider invertible matrices,
linear combinations are enough, reducing the number of mappings to try from O(2n2) to
O(2n).

To illustrate this, let consider the following example:
b0 = x⊕ y ⊕ xy ⊕ xz
b1 = x⊕ z ⊕ xz ⊕ yz
b2 = y ⊕ xy ⊕ yz

.

Assuming this is the ANF of the last round, the bits 0, 1 and 2 are balanced if and
only if there is no trail reaching at least one monomial of {x, y, z, xy, xz}, {x, y, z, xz, yz}
and {x, y, z, xy, yz} respectively.

Let now look at all the linear combinations of b0, b1 and b2:
b0 ⊕ b1 = y ⊕ z ⊕ xy ⊕ yz
b0 ⊕ b2 = x⊕ xz ⊕ yz
b1 ⊕ b2 = x⊕ y ⊕ z ⊕ xy ⊕ xz

b0 ⊕ b1 ⊕ b2 = z

We can observe the linear combination b0 ⊕ b1 ⊕ b2 is balanced if and only if there is no
trail reaching z. Furthermore to check whether there is an integral distinguisher on the
cipher it is enough to check whether b0 ⊕ b1 ⊕ b2 is balanced or not. Indeed, if b0 ⊕ b1 ⊕ b2
is not balanced then there is a trail reaching z and so all other linear combinations of b0,
b1 and b2 are not balanced since they all depend on z.
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4.4 Linear Mapping at the Input
As for linear combinations at the output, it is not required to try all invertible matrices
to cover the whole search space. Actually, what matters for integral distinguishers is the
vector space spawned by constant (linear combinations of) bits. Indeed, let P (x1, . . . xn)
be a polynomial and let H(i, j) be the property that a polynomial does not contain any
monomial greater than or equal to xi . . . xj . We know there exists two polynomials P1
and Q1 such that P (x1, . . . , xn) = x1P1(x2, . . . , xn) ⊕ Q1(x2, . . . , xn). In particular, for
any k ∈ {1, . . . , n}, P satisfies H(1, k) if and only if P1 satisfies H(2, k). Now let be
j ∈ {2, . . . , n} and consider polynomial P ′(x1, . . . , xn) = P (x1 ⊕ xj , x2, . . . , xn). We have
the following equalities:

P ′(x1, . . . , xn) = P (x1 ⊕ xj , x2, . . . , xn)
= (x1 ⊕ xj)P1(x2, . . . , xn)⊕Q1(x2, . . . , xn)
= x1P1(x2, . . . , xn)⊕ (xjP1(x2, . . . , xn)⊕Q1(x2, . . . , xn))
= x1P1(x2, . . . , xn)⊕Q′1(x2, . . . , xn)

As a consequence, P ′ satisfies H(1, k) if and only if P1 satisfies H(2, k) and thus P ′ satisfies
H(1, k) if and only if P satisfies H(1, k). Hence, any invertible matrix that does not modify
the vector space of constant bits does not modify the integral distinguisher. In particular,
when looking only for the existence of an integral distinguisher i.e. without optimizing on
the data complexity, it is enough to exhaust the only linear combinations of bits that will
be constant, reducing the number of mappings to test from O(2n2) to O(2n).

5 Search Algorithm
In [TM16], Todo and Morii proposed a way to look for integral distinguishers based on the
division property, with a complexity upper bounded by 2n, where n is the block size of the
block cipher. In practice, they said that their algorithm is not suitable for block ciphers
with block size beyond 32 bits, and thus the number of possible targets is very limited.
However, a lot of work has been done towards efficiently searching such distinguishers,
based on either MILP or SAT/SMT solvers.

Regarding MILP-based search algorithms, the main point is to generate sets of inequal-
ities describing all the propagation tables involved in the decomposition of the cipher. But
the number of inequalities required to describe a 16-bit propagation table seems too large
to be handled efficiently by any MILP solver. For instance, the propagation table of the
Super-Sbox of Midori-64 contains approximately 223 elements. Hence we developed a
dedicated algorithm to search for integral distinguishers. To the best of our knowledge,
this is the first time one shows a practical algorithm to search for division trails on 64-bit
block ciphers not relying on generic solvers for MILP, SAT or SMT models.

5.1 Dedicated Tool to Search for Integral Distinguishers
We aimed at developing a tool to search for integral distinguishers and able to handle
large propagation tables to increase the precision compared to previous approaches. To
simplify the implementation process, and to be as fast as possible, we restrict ourselves in
answering the following question: is there an integral distinguisher? Indeed, we believe
this is the most important question and most often the only one interesting designers.
Hence we did not try to improve on the data complexity nor the number of balanced bits.
Actually, finding the integral distinguisher with the smallest possible data is a very hard
task and seems completely out of reach if we consider linear mappings at the input.
Decomposition of the cipher. Our tool takes as input a block cipher, given as a
sequence of R× 4 16-bit functions {f0

0 , f
0
1 , f

0
2 , f

0
3 , f

1
0 , . . . , f

R−1
3 } and a nibble permutation
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Algorithm 3: Overview of our tool
Data: Sequence of R× 4 16-bit functions {f0

0 , f
0
1 , f

0
2 , f

0
3 , f

1
0 , . . . , f

R−1
3 } and a

nibble permutation σ of {0, 1, . . . , 15}.
Result: List of integral distinguishers, if the list is empty there is no integral

distinguisher against the cipher
L←− ∅
for ci from 0 to 3 do

for co from 0 to 3 do
Vi ←− minimalInputs(f0

ci
)

Vo ←− minimalOutputs(fR−1
co

)
for vi ∈ Vi and vo ∈ Vo do

flag ←− false
for i ∈ vi and o ∈ vo do

if isThereATrail(i, o, {f1
0 , f

1
1 , . . . , f

R−2
3 }, σ) then flag ←− true

end
if not flag then L←− (vi, vo)

end
end

end
return L

σ of {0, 1, . . . , 15}. We denote by xji the i-th nibble at the input of round j and by yji the
i-th nibble at output of round j. The relation between those variables is as follows:

xj0

fj
0−→

yj0 yjσ(0) xj+1
0

xj1 yj1 yjσ(1) xj+1
1

xj2 yj2 yjσ(2) xj+1
2

xj3 yj3 yjσ(3) xj+1
3

... σ−→ =
...

xj12

fj
3−→

yj12 yjσ(12) xj+1
12

xj13 yj13 yjσ(13) xj+1
13

xj14 yj14 yjσ(14) xj+1
14

xj15 yj15 yjσ(15) xj+1
15

The functions may depend on some key bits so Super-Sboxes are handled. However
we do not take care of the key-schedule and key bits involved in different functions are
considered as independent. This representation is generic enough to handle most of
SPN-based block ciphers with 64-bit internal state. Note that here

(xj4i, x
j
4i+1, x

j
4i+2, x

j
4i+3)

fj
i−→ (yj4i, y

j
4i+1, y

j
4i+2, y

j
4i+3)

means that the transition from (xj4i, x
j
4i+1, x

j
4i+2, x

j
4i+3) to (yj4i, y

j
4i+1, y

j
4i+2, y

j
4i+3) should

be valid regarding the propagation table of f ji .

First layer. This corresponds to function minimalInputs in Algorithm 3 and aims at
finding which linear mapping to add in front of the cipher. Here first layer means the first
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application of the four Super-Sboxes (one for each column). We only want to check for
the existence of an integral distinguisher so our input division property has an Hamming
weight of 63 (i.e. the input of one Super-Sbox has Hamming weight 15 while the 3 other
ones have Hamming weight 16). For each column, we try the 216 − 1 possible linear
combinations for the constant bit and keep only the minimal ones. Here, minimal means
the smallest set of inputs such that if there is no integral distinguisher from the inputs of
the set then there is no integral property on the cipher.

Note that this step of the algorithm is equivalent to generating 216 − 1 invertible
matrices Lin such that the first line takes all the possible non-zero values, then computing
the propagation table of f0

i ◦ Lin and extracting the line 01 . . . 1 of the table. However,
once we compute all the products of the components of f0

i , getting all the sets we want is
straightforward. Let us consider the following example:

f000 = 1
f001 = x⊕ y ⊕ yz
f010 = y ⊕ xz
f100 = z ⊕ xy ⊕ yz

f011 = y ⊕ xy ⊕ xz ⊕ yz
f101 = xz

f110 = xy ⊕ xz
f111 = xz ⊕ xyz

The only information we need to remember is the monomials of degree at least n− 1 (in
this example n = 3 ) and then we only work with the simplified following version:

f001 = yz

f010 = xz

f100 = xy ⊕ yz

f011 = xy ⊕ xz ⊕ yz
f101 = xz

f110 = xy ⊕ xz
f111 = xz ⊕ xyz

Now, combining f with a linear mapping Lin = (αi,j) modifies monomials as follows:

xy −→ α0,0xy ⊕ α0,1xz ⊕ α0,2yz ⊕ p0(x, y, z)
xz −→ α1,0xy ⊕ α1,1xz ⊕ α1,2yz ⊕ p1(x, y, z)
yz −→ α2,0xy ⊕ α2,1xz ⊕ α2,2yz ⊕ p2(x, y, z)
xyz −→ xyz ⊕ q(x, y, z)

where the pi’s have degree at most 1 and q at most 2. But we are only interested in the
u’s such that fu contains a monomial containing yz. Hence we can restrict ourselves to:

f001 = α2,2yz

f010 = α1,2yz

f100 = (α0,2 ⊕ α2,2)yz

f011 = (α0,2 ⊕ α1,2 ⊕ α2,2)yz
f101 = α1,2yz

f110 = (α0,2 ⊕ α1,2)yz
f111 = xyz

Now, we can try the 23 − 1 possible linear combinations and we find that the only sets we
have to try are {001, 110}, {010, 101} and {100, 011} corresponding respectively to x⊕ z,
y and z being constant. Indeed, all other sets have smaller elements and so will not lead
to a distinguisher if those ones do not.

Last layer. This corresponds to function minimalOutputs in Algorithm 3. As for the
first layer, the last one is handled separately. For each column, we try the 216 − 1 possible
linear combinations for the balanced bit and keep only the minimal ones i.e. the smallest
set of outputs required to check whether there is an integral distinguisher against the
cipher or not. This was illustrated in Section 4.3.

Middle layers. We begin by constructing the propagation tables for each of the f ji ’s.
Then we reduce the tables using the improvement described Section 4.1. Then for each
pair of input/output constructed in the previous steps, we exhaust all trails with a classical
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branch-and-bound approach. At each step we look at all the unset variables, guess the
one with the less possible values and propagate this information which may reduce the
number of possible values for other variables. If we find a trail then there is no integral
distinguisher for the pair. Otherwise the pair is saved and will be returned by the algorithm.
An example illustrating the behavior of Algorithm 4 is given Section A.

Algorithm 4: isThereATrail
Data: a 64-bit input i, a 64-bit output o, a sequence of R× 4 16-bit functions

{f0
0 , f

0
1 , f

0
2 , f

0
3 , f

1
0 , . . . , f

R−1
3 }, a nibble permutation σ of {0, 1, . . . , 15}, the

set of variables X
Result: boolean indicating whether there is a trail from i to o
Keep for f0 only transitions from i

Keep for fR−1 only transitions to o
if a variable from X has no possible value then return false
x←− selectNextVariable(X, {f0

0 , . . . , f
R−1
3 })

for all possible value k of x do
X ′ ←− X
set variable x in X ′ to value k
s←− {f0

0 , . . . , f
R−1
3 }

Remove from propagation tables in s transitions which do not go through k in
variable x
if isThereATrail(i, o, s, σ,X ′) then return true
Remove from propagation tables of {f0

0 , . . . , f
R−1
3 } transitions which do go

through k in nibble x
end
return false

Complexity. It is quite hard to evaluate the time complexity as it depends on too many
parameters. First it is important to notice that we have less transitions than in the classical
approach. For instance if we would like to know whether a transition x → y is valid
through a Super-Sbox with our approach we only have to look in the propagation table
of the Super-Sbox. But in the classical approach we would have to find u and v such
that both x → u and v → y are valid transitions through the SubCells layer and such
that u→ v is a valid transition through the linear layer. Furthermore there may be many
couples (u, v) satisfying those conditions.

It also seems that sometimes searching for integral distinguishers is much easier than
we would expect. Our tool was designed to focus on trails with inputs of Hamming weight
n − 1 and outputs of Hamming weight 1 which highly restricts the possible values of
intermediate variables.

In practice, the running time of our tool was reasonable for all the ciphers we tried
except for one: LED [GPPR11]. We believe this due to the complex linear layer of LED
which leads to a very high number of possible transitions.

Remarks. We tried several heuristics for the selection of the next variable to guess and
selecting the one with the less possible values gave the best results. Note that in our
algorithm a variable is a nibble. We tried to guess the internal state variables bit by bit
instead of nibble by nibble but that was much worst for most of our targets. We believe
this is because for SPN with a linear layer operating at the word level, bit-based division
property is not that far to word-based division property.

The most expensive operation in our algorithm is the propagation which aims at
restricting the number of possible values for all variables. But overall, the main difficulty is
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the high number of trails to try. Hence, we believe the improvement presented Section 4.1
is of great importance to improve the efficiency of any approach searching for integral
distinguishers.

Note also that Algorithm 3 could be easily extended to bigger internal states but
limitation comes from Algorithm 2 which cannot be used to build propagation table for
functions on more than 16 bits.

6 Results
In this section we give the results of our new algorithm combined with the improvements
presented in Section 4. We also used our tool to search for low data distinguishers by
setting at the input each Super-Sbox to an Hamming weight of 0, 15 or 16. While this
does not cover all the possible inputs, we obtained some very interesting results.

6.1 Midori-64
Midori is a lightweight block cipher designed by Banik et al. and presented at ASI-
ACRYPT’15. It has a classical SPN structure but the MixColumns matrix is a binary
non-MDS matrix. An overview of the cipher is depicted on Figure 1, and we refer the
interested readers to [BBI+15] for the specification of Midori.

Figure 1: Overview of Midori-64 [BBI+15]

We decomposed the cipher by alternating Super-Sboxes and linear layer. For the last
part of the cipher, if the number of rounds targeted is odd then we consider the 16-bit
sboxes obtained by combining both the linear layer and the SubCell operations.

We were able to study up to 10 rounds of Midori. As a result, we found new integral
distinguishers against 9-round Midori-64 and showed there is no such distinguisher against
10 rounds. Note that the previously known best integral distinguisher against Midori-64
reached only 7 rounds and the technique used was described in [ZR19] by Zhang and
Rijmen. Furthermore, they claimed that there is no potential of improvement of the result
on the attack by distinguishers after using our method which our results invalidate. The
fact is that Zhang and Rijmen compute exactly the Sbox propagation tables and the linear
layer, but the composition on two rounds is not exact and it is precisely what we exploit.

Integral distinguishers against 6-round Midori-64. We found several distinguishers
on 6 rounds requiring only 215 data and the search procedure took 569 CPU-minutes (32
minutes on our 2× AMD EPYC 7742 64-Core server). For instance, if bits of indices from
ShuffleCell−1({9, 16, . . . 63}) are constant while we sum on the other ones, then the xor
of bits 1, 5, 9 and 13 of the state right after the 6-th application of the SubCell operation
is balanced.

Integral distinguishers against 7-round Midori-64. We used our tool to search
for integral distinguishers on 7 rounds. We were able to find distinguishers requiring
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only 245 chosen plaintexts. For instance, if at the input the linear combination of bits
b1 ⊕ b5 ⊕ b9 ⊕ b13 is constant for three first Super-Sboxes and if the whole fourth one is
also constant while summing on a complementary space of dimension 45 then the xor of
bits 1, 5, 9 and 13 of the state right after the 7-th application of the SubCell operation is
balanced.

However our tool shown its limits on this example. Exhausting distinguishers (inside
our restricted search space) with data 248 and 247 took only few minutes on our server.
But we manually stopped the search for distinguishers requiring 246 after two weeks. For
distinguishers with data 245 we had to manually force an input/output pair we believed
would lead to a distinguisher and it took a full day to our tool to confirm it. This shows
how hard it is to search for low data integral distinguishers, at least with our method.
Integral distinguishers against 9-round Midori-64. Our search algorithm took 5, 183
CPU-minutes to exhaust minimal distinguishers (89 minutes on our server). As a result,
we found several distinsguishers requiring 263 data. At the input they require that, for one
Super-Sbox, one of the following linear combinations of bits is constant:

• b1 ⊕ b5 ⊕ b9 ⊕ b13

• b0 ⊕ b1 ⊕ b2 ⊕ b4 ⊕ b5 ⊕ b6 ⊕ b8 ⊕ b9 ⊕ b10 ⊕ b12 ⊕ b13 ⊕ b14

In that case, and if summing on a complementary space of dimension 63, for all columns
on the state right after the 9-th application of the SubCell operation the following linear
combinations of bits are balanced:

• b1 ⊕ b5 ⊕ b9 ⊕ b13

• b0 ⊕ b2 ⊕ b4 ⊕ b6 ⊕ b8 ⊕ b10 ⊕ b12 ⊕ b14

• b0 ⊕ b1 ⊕ b2 ⊕ b4 ⊕ b5 ⊕ b6 ⊕ b8 ⊕ b9 ⊕ b10 ⊕ b12 ⊕ b13 ⊕ b14

Integral distinguishers against 10-round Midori-64. Our search algorithm exhausted
the search space in 509 CPU-minutes (11 minutes on our server) and did not find any
distinguisher.1

Propagation tables. We compared the propagation tables of both the Super-Sbox and
the classical approach. We found that as soon as the Hamming weight of the input is at
least 9 then all lines of the table present a difference:

0 : 0% 4 : 19% 8 : 99.8% 12 : 100%
1 : 0% 5 : 38.2% 9 : 100% 13 : 100%
2 : 0% 6 : 85% 10 : 100% 14 : 100%
3 : 2.9% 7 : 97.8% 11 : 100% 15 : 100%

This table indicates the percentage of inputs of Hamming weight hw for which the classical
approach leads to at least one transition not in the propagation table of the Super-Sbox,
i.e. a false transition. In particular, it shows that for low Hamming weight inputs there is
no benefit in considering the Super-Sbox (in term of precision). Furthermore, over the
7,815,842 elements in the propagation table obtained with the classical approach, only
3,860,001 actually belong to the propagation table of the Super-Sbox. Hence, with the
classical approach, approximately half of the transitions are not valid, showing how our
technique increases the precision of the division property.
Remark. Since we did not consider the key-schedule nor the round constants (seen as
belonging to the key-schedule), we were able to reduce the search space by a factor 4,
using the inner symmetries of the cipher.

1Note that it does not mean there are no integral distinguishers against 10 rounds but only that we
can not conclude on their existence.
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6.2 SKINNY-64
SKINNY [BJK+16] is a family of very lightweight tweakable block ciphers designed by
Beierle et al. and presented at CRYPTO’16. The round function of SKINNY is very similar
to the one of Midori. It also has a classical SPN structure and a non-MDS binary matrix
is used for the MixColumns operation. But the matrix has a low weight (only half of the
coefficient are non-zero) and the tweakey is xored to the two first rows only. The round
function of SKINNY is depicted on Figure 2 and we refer the interested reader to [BJK+16]
for more details.

Figure 2: Round function of SKINNY [BJK+16]

We focused on SKINNY-64, the internal state of the 128-bit version being too big to be
handled by our tool. As for Midori, we decomposed the cipher by alternating Super-Sboxes
and linear layers. However, we had to generate two different propagation tables for the
Super-Sboxes, one for the first column, and one for the other columns. Indeed, the third
nibble of the first column has to be xored with the round constant but not to the key.
Hopefully, the same constant (0x02) is used for all rounds and we do not need to build a
different propagation table for each round nor taking care of the rounds we are analysing.

Many integral distinguishers against 10-round SKINNY-64 were published in the last
years (e.g. [BJK+16], [ZR19] or [EKKT18]). While the designers of SKINNY wrote in the
original paper that maybe the division property could be used to slightly extend those
results, Zhang and Rijmen claimed in [ZR19] there is no space for improvement of the result
on this type of distinguishers. Actually, all the previous approaches led to the conclusion
that there is no integral distinguisher against 11 or more rounds of SKINNY-64. But with
our new technique, we were able to find distinguishers against 11 rounds, showing the
benefit in precision obtained by considering Super-Sboxes.

Integral distinguishers against 8-round SKINNY-64. We found several distinguishers
on 8 rounds requiring only 215 data. For instance, if bit 1 as well as all bits of indices in
ShiftRows−1({16, . . . , 63}) are constant while we sum on the other ones, then both bit
7 and bit 11 of the state right after the 8-th application of the SubCells operation are
balanced.

The search procedure took 125 CPU-minutes to finish (5 minutes on our server).

Integral distinguishers against 10-round SKINNY-64. We found several distinguishers
on 10 rounds requiring only 247 data. For instance, if we take as constant bits of indices in
ShiftRows−1({13, 32, . . . , 47}) while we sum on the other ones, then bit 39 of the state
right after the 10-th application of the SubCells operation is balanced.

The search procedure took 160 CPU-minutes to finish (7 minutes on our server).

Integral distinguishers against 11-round SKINNY-64. The search algorithm took 683
CPU-minutes (22 minutes on our server) to exhaust all the minimal distinguishers. As a
result we found if bit 1 is constant while summing on all the 63 other bits, then bits b6, b7,
b7 ⊕ b15, b22, b23, b18 ⊕ b30, b23 ⊕ b31, b38, b29, b34 ⊕ b46, b39 ⊕ b47, b54 and b55 of the state
right after the 11-th application of the SubCells operation are balanced.

Note that from those results we can deduce more balanced bits as for instance b15. Our
algorithm does not output it because it only tries a minimal set of (linear combinations of)
bits as explained Section 5.



Patrick Derbez and Pierre-Alain Fouque 189

Integral distinguishers against 12-round SKINNY-64. Our search algorithm exhausted
the search space in 152 CPU-minutes (4 minutes on our server) and did not find any
distinguisher2.

Propagation tables. As for Midori, we compared the propagation tables of both the
Super-Sbox and the classical approach. Results are also surprising since even for inputs of
hamming weight 2 there are differences:

0 : 0% 4 : 49.1% 8 : 92.5% 12 : 98.6%
1 : 0% 5 : 62.9% 9 : 95.8% 13 : 98.4%
2 : 13.3% 6 : 76.2% 10 : 97.8% 14 : 98.3%
3 : 28.9% 7 : 86.5% 11 : 98.8% 15 : 93.7%

More precisely, over the 7,632,808 elements in the propagation table constructed by the
classical approach, 3,043,045 do not belong to the propagation table of the Super-Sbox
and thus correspond to false transitions. It shows again how our technique is much more
accurate than the classical approach.

6.3 HIGHT
HIGHT [HSH+06] is block cipher designed by Hong et al. and presented at CHES’06. It
is a generalized Feistel Network with 8 branches of 8 bits each. The resistance of HIGHT
comes from applying XOR and addition mod 28 alternatively. The round function of
HIGHT is depicted on Figure 3 and we refer interested readers to [HSH+06] for the complete
specification.

Figure 3: Round function of HIGHT

We computed the propagation tables of both the functions:

• (x, y)→ (x, y + (F1(x)⊕ k) mod 256)

• (x, y)→ (x, y ⊕ (F0(x) + k mod 256)).

One round of HIGHT is then composed of a parallel application of those functions followed
by a permutation. This shows that Algorithm 2 as well as our tool are very versatile and
not restricted to classical SPN and Super-Sboxes.

We ran our search algorithm up to 21 rounds of HIGHT. We found integral distinguishers
up to 20 rounds while the previously best known integral distinguisher against HIGHT could
cover only 19 rounds with a data complexity of 263 [FTIM19].

2At first we made a mistake in our description of SKINNY in our tool and applied the tweakey to bits of
even indices (instead of the two first lines). Interestingly in that case there are integral distinguishers on
12 rounds.
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Integral distinguishers against 20-round HIGHT. The search algorithm took more
than 13 days on our server to exhaust all the minimal distinguishers. As a result, it found
4 distinguishers:

constant (input) balanced (output)
b2 ⊕ b4 ⊕ b5 ⊕ b8 b17 ⊕ b22 ⊕ b23 ⊕ b24

b34 ⊕ b36 ⊕ b37 ⊕ b40 b49 ⊕ b54 ⊕ b55 ⊕ b56

b17 ⊕ b22 ⊕ b23 ⊕ b24 b50 ⊕ b52 ⊕ b53 ⊕ b56

b49 ⊕ b54 ⊕ b55 ⊕ b56 b18 ⊕ b20 ⊕ b21 ⊕ b24

Remark. Our distinguishers against 20-round HIGHT require linear mappings both in
front and back of the cipher and we did not find other distinguishers. This shows the
property all maximal degree monomials used in [HLLT20] does not ensure security against
integral distinguishers as claimed by Hebborn et al.. Indeed, while they do consider the
case of a linear mapping added at the end of the cipher, they do not consider the possibility
of adding it at the beginning.

6.4 Low Data Distinguishers
We experimentally verified the low data distinguishers and the experiments never failed.3
For each experiment all the round keys as well as the constant bits were drawn uniformly
at random, showing our distinguishers are independent of the key schedule as we expected.

We do not give results for both 8-round Midori-64 nor 9-round SKINNY-64. This
is because the best integral distinguishers we found have approximately the same data
complexity than our distinguishers on 9 and 10 rounds respectively. This comes from the
restriction to the search space we added to our tool: at the input of the cipher, for each
Super-Sbox the input has Hamming weight 0, 15 or 16.

7 Conclusion
In this paper we showed how considering larger Sboxes and, especially, Super-Sboxes, makes
the propagation more accurate. We discovered new integral distinguishers that previous
approaches could not find, covering more rounds against 3 well-studied block ciphers.
We also proposed several generic improvements regarding division property, including an
algorithm to reduce the number of trails to try as well as much faster algorithms to add
linear mappings around the cipher, reducing the number of mappings to try from O(2n2)
to O(2n).

We also believe this work will challenge the community in handling such large propaga-
tion tables with generic solvers for MILP, SAT or SMT models. Furthermore our search
algorithm is quite basic and we are sure there is room for improvement.

Future work. In this work we built the propagation tables for Super-Boxes by adding
transitions valid for at least one key. However it could be interesting to investigate the
weak-key setting, for instance by adding a transition only if it is valid for 50% of the keys.
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A About the Search Procedure
In this section we detail our search procedure on an example extracted from our tool
on SKINNY-64. The procedure is a classical branch-and-bound, guessing variables and
propagating constraints to other ones. Let assume after s steps of the algorithm one
branch arrives to the internal state described in Table 2. This table contains the possible
values for each (nibble) variable involved in a division trail. Variables from xi and yi are
related by the propagation tables of the Super-Sboxes while variables from yi and xi+1 are
related by the propagation tables of the linear layers. More precisely, for all i the following
transitions should hold:

• (xi[σ(4j)], . . . , xi[σ(4j + 3)]) SSB−−−→ (yi[4j], . . . , yi[4j + 3]), 0 ≤ j < 4

• (yi[σ(4j)], . . . , yi[σ(4j + 3)]) L−→ (xi+1[4j], . . . , xi+1[4j + 3]), 0 ≤ j < 4

• σ : (0 1 . . . 15)→ (0 13 10 7 4 1 14 11 8 5 2 15 12 9 6 3)
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Table 2: Internal state at Step s

y1 x2 y2 x3 y3 x4 y4 x5

0 4 F F 7 F 1, 4, 6, C 0 0
1 F 4 F B 0, 2, 4 B 0 0
2 F F F D 1, 2, 4, 6, A,C 7 0 6
3 6 F F 1 0, 2, 8 6, A,C,E 8 0
4 F F F F 2, 3, 5, 6, 9, D, F 3, 5, 7, E C 0
5 F F 2 F 1, 2, 6, C 2, 3, 5, 6, 9, B 0 C

6 F F 3 F 1, 2, 6, 9, C 3, A,C,E 4 0
7 F F 1 F 1, 2, 4, 6, C 0 0 0
8 F F F F 1, 2, 4, 6, 9, C 0 0 0
9 F F F 3, 6, A,E 1, 3, 6, C 0 0 0
10 F F F 7, B, F F 1, 2, 6, C 6 0
11 F F F 3, 7, B,E 2, 4, 6 1, 2, 3, 4, 5, 6, 7, 9, A,C,E 0 0
12 F 6 F F 1, 3, 6, C 1, 3, 6, C,E 2 E

13 F F 1 7 2 0 0 0
14 F F F F F 1, 3, 5, 6, 7, C,E 0 0
15 F F F B 0 0 0 0

At this step, our algorithm first searches for the unset variable with this least possible
values. If several variables reach this minimum our tool would select in priority the furthest
from the middle (y3 in this example). Here x3[10] is selected. It can assume only 3 different
values: 7, B and F . At this point the algorithm creates two branches: a first one with
x3[10] = 7 and a second one with x3[10] ∈ {B,F}. Variable x3[10] is involved in two
transitions:

• (x3[0], x3[13], x3[10], x3[7]) SSB−−−→ (y3[0], y3[1], y3[2], y3[3])

• (y2[8], y2[5], y2[2], y2[15]) L−→ (x3[8], x3[9], x3[10], x3[11])

For each branch we create a list of transitions to check for and add to it those two ones.
Then as long as the list is non-empty, we pick the transition with the least possible
values for the input or output, remove it from the list and check whether it restricts the
possible values of involved variables. For instance, here y2[8, 5, 2, 15] is fixed so we begin
by the transition (y2[8], y2[5], y2[2], y2[15]) L−→ (x3[8], x3[9], x3[10], x3[11]). We look into
the propagation table TL and for each value from TL[y2[8], y2[5], y2[2], y2[15]] contained in
V x3[8]× V x3[9]× V x3[10]× V x3[11] (where V x3[i] is the set of possible values for x3[i]),
we save the possible values for each nibble independently. Finally, we update the sets
V x3[i] and for each of them which changed we add the two corresponding transitions to
the list. If a set V x3[i] becomes empty then there is no solution and the branch is cut.
Tables 3 and 4 described the two branches, modified sets of values are colored in blue.
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Table 3: Internal state at Step s+ 1 - first branch

y1 x2 y2 x3 y3 x4 y4 x5

0 4 F F 7 F 1, 6, C 0 0
1 F 4 F B 2, 4 B 0 0
2 F F F D 1, 2, C 7 0 6
3 6 F F 1 8 A,E 8 0
4 F F F F 2, 6, 9 7 C 0
5 F F 2 F 1, 2, 6, C 2, 6, 9 0 C

6 F F 3 F 1, 2, 6 E 4 0
7 F F 1 F 1, 2, 6, C 0 0 0
8 F F F F 1, 2, 6, C 0 0 0
9 F F F E 1, 6, C 0 0 0
10 F F F 7 F 1, 2, 6, C 6 0
11 F F F B 2, 4 3, 7, 9, A,E 0 0
12 F 6 F F 6 E 2 E

13 F F 1 7 2 0 0 0
14 F F F F F 3, 7, E 0 0
15 F F F B 0 0 0 0

Table 4: Internal state at Step s+ 1 - second branch

y1 x2 y2 x3 y3 x4 y4 x5

0 4 F F 7 F 1, 4, 6, C 0 0
1 F 4 F B 0, 2, 4 B 0 0
2 F F F D 1, 2, 4, 6, C 7 0 6
3 6 F F 1 0, 2 6, A,C,E 8 0
4 F F F F 2, 3, 5, 6, 9, D, F 3, 5, 7, E C 0
5 F F 2 F 1, 2, 6, C 2, 3, 5, 6, 9, B 0 C

6 F F 3 F 1, 2, 6, 9, C 3, A,C,E 4 0
7 F F 1 F 1, 2, 4, 6, C 0 0 0
8 F F F F 1, 2, 4, 6, 9, C 0 0 0
9 F F F 3, 6, A,E 1, 3, 6, C 0 0 0
10 F F F B,F F 1, 2, 6, C 6 0
11 F F F 3, 7, B,E 2, 4, 6 1, 2, 3, 4, 5, 6, 7, 9, A,C,E 0 0
12 F 6 F F 1, 3, 6, C 1, 3, 6, C,E 2 E

13 F F 1 7 2 0 0 0
14 F F F F F 1, 3, 5, 6, 7, C,E 0 0
15 F F F B 0 0 0 0
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