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Abstract. In this paper, we study algorithm substitution attacks (ASAs), where an
algorithm in a cryptographic scheme is substituted for a subverted version. First,
we formalize and study the use of state resets to detect ASAs, and show that many
published stateful ASAs are detectable with simple practical methods relying on state
resets. Second, we introduce two asymmetric ASAs on symmetric encryption, which
are undetectable or unexploitable even by an adversary who knows the embedded
subversion key. We also generalize this result, allowing for any symmetric ASA (on
any cryptographic scheme) satisfying certain properties to be transformed into an
asymmetric ASA. Our work demonstrates the broad application of the techniques
first introduced by Bellare, Paterson, and Rogaway (Crypto 2014) and Bellare, Jaeger,
and Kane (CCS 2015) and reinforces the need for precise definitions surrounding
detectability of stateful ASAs.
Keywords: Algorithm Substitution Attack, Symmetric Encryption, State Reset,
Kleptography

1 Introduction
In this paper, we study Algorithm Substitution Attacks (ASAs). ASAs were first presented
by Bellare, Paterson, and Rogaway [BPR14], as a specific possibility within the research
area of kleptography [YY96, YY97, YY98, YY04, YY03]. In an ASA on a symmetric
encryption scheme, an attacker has the following goal: replace an encryption function with
a subverted version, such that, upon observing ciphertexts, the attacker is able to recover
the secret key while the user is unable to detect the difference between the subverted
and original encryption algorithms [BPR14]. Such an attack is certainly outside of the
traditional security definitions considered in cryptography. However, revelations of the
activities of nation-state intelligence agencies since 2013 [BBG13] have shown that such
attacks are aligned well with both the intentions and the capabilities of these potential
adversaries. Under threat of mass surveillance, it is imperative for us to study the ways in
which cryptographic security may be undermined so we can best mitigate the effects.

We contribute two main improvements to the existing literature on ASAs. First, we
formalize a possible method for detecting ASAs involving the manipulation of the state
maintained by the subverted algorithm. We describe a model that allows a detector to
force re-use of the algorithm’s maintained state, as could happen when the algorithm is
running on a virtual machine. This changes the detectability analysis of several published
ASAs, rendering them easily detectable. Second, we describe two modifications to existing
ASAs that turn them into asymmetric ASAs, which are more resilient to exploitation by
another party who reverse engineers the subverted implementation.

Background. The possibility of subverting a cryptographic algorithm by changing the
implementation to differ from the specification is not new. Termed kleptography, research
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in this area was initiated by Young and Yung [YY96], who did several follow-up works
[YY97, YY98, YY04, YY03]. Their work was inspired by subliminal channels in public-key
cryptosystems [Sim85, Des90], which they then showed could create serious problems.
Several authors have studied backdoors in symmetric encryption [RP97, Pat99]. Goh,
Boneh, Pinkas, and Golle [GBPG03] studied implementations of TLS/SSL and SSH that
provide key recovery capabilities. Schneier, Fredrikson, Kohno, and Ristenpart published
a survey of cryptographic subversion in general [SFKR15].

Crucial in the development of this area of research were the revelations by Edward
Snowden of the activities of the NSA in efforts to break the encryption used for internet
traffic [BBG13]. This included some information on one case of successful cryptographic
subversion in practice: the pseudorandom bit generator Dual_EC_DRBG [CNE+14].
These events renewed interest in this area of research, starting with the work of Bellare,
Paterson, and Rogaway [BPR14] on ASAs.

Algorithm substitution attacks (ASAs). Suppose a user U is using a symmetric encryp-
tion scheme SE for encryption of their communications. An attacker (sometimes referred
to as Big Brother) is able to exchange the encryption algorithm SE.Enc for an alternative
algorithm Sub.Enc, which we call the subverted algorithm. While using the algorithm
Sub.Enc, U will send a set of ciphertexts. From observation of these ciphertexts, the
attacker wants to be able to recover the secret key k used for encryption. If this was the
only requirement, an ASA would be trivial: the subverted encryption algorithm could
simply output the secret key on any input. However, the attacker would like continuous
exploitation of the system, and so wishes for U to be unaware of the subversion. For
this we require an ASA to be undetectable, meaning that U should not be able to (with
black box access) distinguish between Sub.Enc and SE.Enc. A minimum requirement for
undetectability would be that all (or all but a negligible fraction) of the possible ciphertexts
correctly decrypt, but this alone would not be enough. The formal requirement is captured
in a detectability game that the user U plays.

A variety of techniques can be used to create an ASA, but in general an ASA relies on
the attacker sharing a key k with the subverted algorithm, and requires that SE.Enc is
randomized. Bellare, Paterson, and Rogaway [BPR14], in their seminal paper, presented
a technique involving acceptance-rejection on ciphertexts generated by the unsubverted
encryption algorithm. A pseudorandom function is evaluated on k and a ciphertext, giving
a single bit b. If the first bit of secret key is equal to b, then that ciphertext is returned;
otherwise, a new one is computed. Since the attacker knows k, he can recover the first bit
of the secret key k from the ciphertext. Repeating this for each position within the secret
key (which the ASA maintains as state) allows for recovery of the whole key. Since k is
unknown to U , the ciphertexts still appear randomly generated. Hence both key recovery
and undetectability are achieved. [BPR14] called this the “biased-ciphertext attack.”

Degabriele, Farshim, and Poettering [DFP15] gave refinements to the definitions of
[BPR14]. In particular, they relaxed a requirement that all ciphertexts generated by
the subverted encryption algorithm must decrypt correctly. They then introduced the
notion of an “input-triggered” ASA, where a certain input would lead to leaking of the
secret key k without regard for correct decryptability. This requires influence over the
distribution of encrypted messages in order to enable key recovery. Bellare, Jaeger, and
Kane [BJK15] improved on the results of [BPR14], notably introducing a stateless version
of the biased-ciphertext attack. In this attack, instead of keeping an index as state, it is
generated pseudorandomly along with the bit b, rendering the ASA stateless.

Aside from symmetric encryption, ASAs on other cryptographic primitives have also
been studied. Several authors have published ASAs on signature schemes [AMV15,
BSKC19, LCWW18]. Armour and Poettering explored ASAs on MAC schemes and the
decryption side of authenticated encryption [AP19a, AP19b]. Chen, Huang, and Yung
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presented an ASA against KEMs [CHY20]. More recently, Berndt et al. studied the
implementation of ASAs on the TLS, WireGuard, and Signal protocols [BWP+20].

1.1 State resets for detection of ASAs
In the literature, there has been a tendency towards ensuring that new ASAs are stateless.
[BPR14], who coined the term ASA, noted that the biased-ciphertext attack they introduced
was stateful. They said that, since the attack is stateful, “a reset of the state will lead
to increased detection ability for an observer, but ... this increase does not appear to
be enough to lead to actual detection.” Improving on the results of [BPR14], [BJK15]
presented their stateless ASA. They seem to interpret some of the conclusions from [BPR14]
differently, saying, with reference to the previous work, “a state reset, as can happen with
a reboot or cloning to create a virtual machine, leads, in their attack, to detection.” They
then define a notion of undetectability that necessitates statelessness, and call this strong
undetectability. As a result of the interpretations and emphasis of [BJK15], as well as
the fact that stateless subversions have proven more difficult to develop, later work has
often acknowledged that stateless schemes are surely preferable. Authors detailing stateful
subversions have spent time justifying that the amount of state that they are maintaining
is small, and so more palatable for the adversary to include [BSKC19, CHY20].

This begs a question: how does an adversary against the undetectability of a subversion
use state resets to detect the subversion? To our knowledge, this question has not been
addressed fully in the literature. The closest example is due to Baek, Susilo, Kim, and
Chow [BSKC19], who included a simple state reset oracle in their undetectability game,
which resets the state to the initial null value. However, as noted by [BJK15], we also wish
to consider what happens when the algorithm is running on a virtual machine, where the
machine state can be cloned and re-run from the same point, potentially many times. The
simple state reset oracle is therefore insufficient.

Contributions. We present a stronger state reset oracle than that used by [BSKC19],
which is able to reset the state of the ASA to any state previously used in the detection
game. Under this new definition, we show that ASAs given by Ateniese, Magri, and
Venturi [AMV15] (on signatures), Baek et al. [BSKC19] (on DSA signatures), and Chen,
Huang, and Yung [CHY20] (on key exchange) are all easily detectable. On the other hand,
we show that original biased-ciphertext ASA by [BPR14] is actually just as undetectable
as the “upgraded”, stateless version given by [BJK15]. Our analysis of the ASA from
[BPR14] also uses the same game-playing proof framework as used in [BJK15], avoiding
the “coin-injective” assumption on the encryption scheme that was necessary in [BPR14].
We present these results in Section 3.

1.2 Asymmetric ASAs
When introducing ASAs, [BPR14] also considered the possibility of an asymmetric ASA
on symmetric encryption. An asymmetric ASA is one where the subverted algorithm
uses an embedded key that is different from the extraction key used for key recovery; for
example, the two keys could be a public-private key pair. The motivation for this comes
from noticing that the embedded subversion key is not particularly protected. Instead,
it is embedded in, for example, malware, distributed to the target. While we assume in
this model that the target themselves will not scrutinize the code they are using, some
third party might find out about the subversion, and reverse engineer the software to
learn the embedded key. The subverter would have a strong incentive to prevent a third
party from obtaining the same key recovery capabilities as the subverter. If the embedded
key is presumed to be public knowledge, and the ASA remains undetectable, then the
subverter is assured that they are the only one capable of exploiting the ASA. In an
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appendix, [BPR14] give the necessary definitional extensions for asymmetric ASAs, and
leave the development of an asymmetric ASA as an open problem. Later works considered
asymmetric ASAs in certain specific contexts, like on signature schemes and KEMs that
satisfy certain conditions [CHY20, BSKC19].

Contributions. In this paper, we will consider two different kinds of asymmetric ASAs.
In a type 1 asymmetric ASA, the subversion is required to be undetectable to an adversary
in possession of the embedded subversion key; we call this augmented undetectability. This
is the simplest way of thinking about an asymmetric ASA, and the definition that has
been used in other literature. In a type 2 asymmetric ASA, we will instead require that
the subversion is only undetectable to an adversary who does not know the embedded
subversion key, as in the case of a symmetric ASA, but we also require that a type 2
asymmetric ASA is secure against exploitation (in the sense that the attacker exploits
the ASA) by an adversary in possession of the embedded subversion key. This less
restrictive requirement is a reflection of the fact that the main goals for an asymmetric
ASA (besides recovering the targeted information) are as follows: to ensure that the user
of the cryptographic scheme (or some entity with the decision-making authority to halt
usage of the cryptographic scheme) being attacked is unaware of the attack, and to ensure
that no other entity is able to exploit the ASA to recover the targeted information. While
this is accomplished by a type 1 asymmetric ASA (indeed, a type 1 ASA is also a type
2 ASA), our stipulated requirements for a type 2 asymmetric ASA will also suffice. The
relaxed requirements allow for more flexibility when designing an ASA, and allows us to
create an ASA whose executions take less time.

In Section 4, we modify the ASA of [BPR14] to obtain a type 1 asymmetric ASA on
symmetric encryption, that is, an ASA undetectable by an adversary who is in possession of
the embedded subversion key and is able to use state resets on the encryption scheme. This
provides an answer to their open problem explicitly in the case of symmetric encryption.
In Section 5 we modify the ASA of [BJK15] (which is itself a modification of the ASA
from [BPR14]) to obtain a type 2 asymmetric ASA on symmetric encryption. To show
the advantages of this ASA, we do a thorough analysis of the parameters and techniques
the attacker can use in practice to recover the key. We show that our type 2 asymmetric
ASA can enable key recovery in practice with a subverted encryption function which runs
in less time, making it, in theory, less susceptible to detection by timing.

In order to give a better idea of how these new ASAs compare to other published ASAs,
we give a comparison of some basic properties in Table 1.

Finally, in Section 6 we give a generalization of the modifications we made to the above
ASAs, in order to apply our results to other cryptographic primitives and security notions.
Our results allow for a large class of ASAs to be modified to create type 1 and type 2
asymmetric ASAs. These results apply to any cryptographic primitive, and in the case
of the type 2 modification, any game-based notion of security. These results will make it
easier for future researchers to evaluate whether their symmetric ASAs can be modified to
create asymmetric ASAs.

2 Preliminaries and Definitions
2.1 Games and algorithms
Proofs in this paper will use the cryptographic game-playing framework [BR06]. In these
games, assignment is denoted by ←, while random sampling is denoted by ←$ . We write
y←$ A(x) to denote running the probabilistic algorithm A on input x, and assigning the
result to y. If we wish to specify the random coins r used in a randomized algorithm, we
will write y ← A(x; r). We will use min-entropy as a measure of the randomness of an
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Table 1: Comparison of properties of various ASAs. An augmented adversary refers to an
adversary in possession of the embedded subversion key. If applicable, |k| = 128.

[BPR14]

[BJK15]

[BSKC19]

[CHY20]

Our type 1

Our type 2

Asymmetric
No state reset
Undetectable vs. regular adversary
Undetectable vs. augmented adversary
Secure vs. augmented adversary
State reset
Undetectable vs. regular adversary (SRDET)
Undetectable vs. augmented adversary (ASRDET)
Secure vs. augmented adversary
Intercepted transmissions needed 128 ≈ 700 3 2 400 ≈ 2600
Runtime multiplier ≥ 7 ≥ 2 ≈ 1 ≈ 1 ≥ 9 ≥ 2

algorithm. Define ηA according to 2−ηA = max
x,y

(Pr[y ← A(x; r)]), where the probability is
taken over the choice of coins r. The min-entropy of A is ηA. ⊥ is used to denote a null
value. If G is a game, then Pr[G] indicates the probability that G returns true.

We will denote game adversaries by script letters (e.g. A). An adversary A is simply
an algorithm. The notation AO indicates that the adversary A has access to the oracle
O for use as a subroutine. The running time of A is the worst-case execution time of A
including the time it takes to execute any subroutines.

2.2 Cryptographic schemes

A cryptographic scheme Λ is a set of algorithms Λ.Alg1, ...,Λ.Algu. We will be using several
cryptographic schemes in this paper, including symmetric encryption and public-key
encryption. We introduce these here, and other schemes as needed.

A symmetric encryption scheme SE is composed of three algorithms: SE.KeyGen, SE.Enc,
and SE.Dec. SE.KeyGen randomly selects a single secret key k of length SE.klen from
{0, 1}SE.klen. SE.Enc is a randomized algorithm with coins r ∈ {0, 1}SE.rlen and takes a key
and a plaintext m ∈ {0, 1}SE.mlen and produces a ciphertext c ∈ {0, 1}SE.clen. SE.Dec is
a deterministic algorithm, takes a key and a ciphertext, and returns a plaintext or ⊥,
indicating an error.

A public-key (or asymmetric) encryption scheme PKE is similarly composed of three
algorithms: PKE.KeyGen, PKE.Enc, and PKE.Dec. PKE.KeyGen randomly generates
a secret key sk and a public key pk. PKE.Enc is a randomized algorithm with coins
r ∈ {0, 1}PKE.rlen and takes a public key and a plaintext m ∈ {0, 1}PKE.mlen and produces
a ciphertext c ∈ {0, 1}PKE.clen (note that we will consider only fixed length ciphertexts
for public-key schemes). PKE.Dec is a deterministic algorithm, takes a secret key and a
ciphertext, and returns a plaintext or ⊥, indicating an error.

We say that a public-key encryption scheme is δ-correct if, for all sk, pk generated from
PKE.KeyGen and m, Pr[PKE.Dec(sk,PKE.Enc(pk,m)) = m] ≥ δ, where the probability is
taken over the choice of coins r for the encryption function. We could define an analogous
property for symmetric encryption, but we will mostly assume that such a δ value will
always be 1 unless otherwise stated.
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PRFF(F)
1. k←$KF
2. X ← ∅
3. b←$ {0, 1}
4. b

′←$ FOF

5. return b = b
′

OF(x)
1. if b = 0 then w ← F(k, x)
2. if b = 1 then
3. if x /∈ X then
4. wx←$W

5. X ← X ∪ {x}
6. return wx

Figure 1: The PRF security game.

2.3 Pseudo-random functions and random oracles
In this paper, we will make use of two standard ways of talking about functions whose
output is hard to predict on new inputs. The first is the notion of a pseudo-random
function (PRF). Let F : KF × {0, 1}∗ →W be a function, for some output set W and key
space KF. Let the PRF game for F be as defined in Figure 1. For an adversary F in the
PRF game for F, we define the advantage of F as AdvPRF

F (F) =
∣∣Pr[PRFF(F)]− 1

2
∣∣.

The second way to talk about functions with unpredictable output is by using the
random oracle model. This model is useful for situations in which there is no secret input
to the function F, so the game in Figure 1 is no longer relevant. In this model, we replace F
by a lazily-sampled random function, and provide oracle access to this function to all game
adversaries. A lazily-sampled random function will return random outputs on previously-
unseen queries, and outputs consistent with previous outputs for any previously-seen
queries. (In the case of b = 1 in the PRF game, the oracle OF behaves as a lazily-sampled
random function.)

2.4 Algorithm substitution attacks
The main focus of this paper is on different kinds of Algorithm Substitution Attacks
(ASAs), and so we define this notion here. Let Λ be a cryptographic scheme composed of
algorithms Λ.Alg1, ...,Λ.Algu. An ASA on Λ, denoted Sub (for subversion), specifies the
following:

• a subversion-key generation function Sub.KeyGen,

• an index λ for the component algorithm of Λ to be subverted, and

• a subverted algorithm Sub.Algλ to replace the chosen algorithm Λ.Algλ.

The key generation algorithm Sub.KeyGen takes no arguments and returns a pair of
keys ek and xk (for embedded key and extraction key). The subverted algorithm Sub.Algλ
has the same inputs as Λ.Algλ, represented by a tuple x, plus an embedded key ek, and
a state variable τ (potentially ⊥, for stateless ASAs); Sub.Algλ has the same outputs as
Λ.Algλ plus the updated state variable τ ′. For example, if Λ is a symmetric encryption
scheme SE and Λ.Algλ is SE.Enc, then we have c, τ ′←$ Sub.Enc(k,m, ek, τ).1

The idea here is that the algorithm Sub.Algλ is chosen by an adversary A who is
trying to subvert the security of scheme Λ. A user U of Λ will unknowingly use Sub.Algλ,
which has the key ek embedded, in place of Λ.Algλ. The adversary A will observe U ’s
communication with other users of the scheme Λ, and violate the security of Λ by making
use of the extraction key xk. Depending on the instantiation, A’s specific attack goal can
vary, although a common one is recovery of whatever secret key is used by U for Sub.Algλ.

Note that we consider here only the subversion of a single algorithm of the scheme Λ.
Other works have considered the case of total subversion (any or all of the algorithms are
substituted), mostly in the context of countermeasures [AFMV19, RTYZ17, RTYZ16].

1For clarity we make a slight abuse of notation here, writing Sub.Enc(k,m, ek, τ) instead of
Sub.Enc(x, ek, τ) for x = (k,m).
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The two keys used by A can be the same, xk = ek. In this case, we may denote
them simply by k, and we refer to this type of ASA as a symmetric ASA. In other cases,
(xk, ek) will be a private key-public key pair, reflecting the fact that embedding the key ek
into an Sub.Algλ may lead to its recovery by some other party. We call such an ASA an
asymmetric ASA. Note that an asymmetric ASA can be used to attack a symmetric-key
primitive Λ (e.g., symmetric encryption), and vice versa. We will discuss the advantages
and disadvantages of an asymmetric ASA in Section 4.

The attacker A wants to complete their attack in a way that is not detectable by U .
In order to measure detectability, we allow U blackbox access to the algorithm Sub.Algλ
(with the embedded key and state implicitly provided), and calculate how well U can
differentiate Sub.Algλ from Λ.Algλ. Formalization of the notion of detectability will be
covered in the next section.

There are a few different ways that previous works have considered the subverter’s
influence on U after the relevant algorithm has been substituted. Bellare, Paterson, and
Rogaway [BPR14] implicitly considered the attacker passive (after the substitution), only
observing ciphertexts of messages that the user decided to encrypt. Degabriele, Farshim,
and Poettering [DFP15] presented an “input-triggered” subversion, which relied on the
subverter’s ability to influence the user to encrypt some particular value, making the
subverter active. Bellare, Jaeger, and Kane [BJK15], addressed this issue by requiring key
recovery to occur for messages sampled from any distributionM, ruling out the attack
from [DFP15] and again making the subverter passive. We follow [BJK15] and consider a
passive subverter who should be able to complete their attack no matter how inputs are
chosen for Sub.Algλ.

3 Using State Reset to Detect ASAs
State reset detection techniques against the undetectability of stateful ASAs have been
acknowledged since the work of Bellare, Paterson, and Rogaway [BPR14], but apart from
Baek, Susilo, Kim, and Chow [BSKC19], the formalization of the state reset capabilities
of a user U has been ignored. In their paper, [BSKC19] capture the idea of state reset
with the ability of U to reset state to a null value. This is akin to wiping the memory
of the program running a cryptographic algorithm, or rebooting the machine. We wish,
however, to capture a stronger notion of state reset. For example, when running on a
virtual machine, instead of being wiped, memory could be cloned during imaging, allowing
a user to force a program to run from the same point of execution multiple times. This
would allow a user to reset the state of a subverted algorithm to any previously used state.

We will define two similar games: an augmented and a non-augmented (or regular)
state reset detection game. These two games differ only in that, in the augmented game,
U is given the embedded key ek. Hence, the augmented game is intended primarily for
asymmetric ASAs, and the non-augmented game is intended for symmetric ASAs (this
is not an absolute requirement, and we will consider regular detectability of asymmetric
ASAs in Section 5). This captures the difference between, for example, a nation state
reverse-engineering one implementation to recover the embedded key, and a casual end-
user doing black-box detection. The state reset detection games (ASRDETSub(U) and
SRDETSub(U) respectively) are given in Figure 2, for some cryptographic scheme Λ and
ASA Sub. These are distinguishability games, where U is asked to determine whether the
oracle it is using is returning values according to the subverted algorithm Sub.Algλ or the
original algorithm Λ.Algλ. All state variables used by the subverted algorithm are saved
between oracle calls, and U has access to an oracle Reset which allows it to reset state to
any previously saved state (but does not give U the contents of the state).

For an adversary U in the state reset detectability games, we define the advantages of U
as AdvSRDET

Sub (U) = |Pr[SRDETSub(U)]− 1
2 | and AdvASRDET

Sub (U) = |Pr[ASRDETSub(U)]−
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ASRDETSub(U)
1. (xk, ek)←$ Sub.KeyGen()
2. i← 1
3. τ0 ← ⊥
4. b←$ {0, 1}

5. b
′←$ UOAlgλ

,Reset (ek)

6. return b = b
′

Reset(j), 0 ≤ j < i

1. if b = 1 then
2. τi ← τj
3. i← i+ 1

OAlgλ(x)
1. if b = 0 then
2. y←$ Λ.Algλ(x)
3. if b = 1 then
4. (y, τi)←$ Sub.Algλ(x, ek, τi−1)
5. i← i+ 1
6. return y

Figure 2: The augmented and non-augmented state reset detection games. The augmented
game ASRDET includes the code in the box; the non-augmented one SRDET does not.

[BPR14] undetectability, with no consideration of state.

[BSKC19] undetectability, with simple state reset.

Our (regular) undetectability, with sophisticated state reset.

[BJK15] undetectability (strong undetectability), disallowing state.
Subsection 3.2/

Subsubsection 3.1.2/

Subsubsection 3.1.1/

Figure 3: Relationships between detectability games in other works and ours. Arrows
indicate that if an ASA is undetectable in the game at the tail of the arrow, then it is also
undetectable in the game at the head of the arrow. Crossed arrows indicate that there
exists an ASA undetectable in the game at the tail of the arrow but detectable at the head
of the arrow.

1
2 |. Informally, we say that Sub is undetectable if the corresponding advantage is small
for any efficient adversary U . Otherwise, it is detectable, and an adversary U with large
advantage represents a strategy for detection.

It is worth taking some time to compare our new detectability game with those in
previous works. The detectability game in [BPR14] did not include state resets, and fully
allowed stateful ASAs. [BJK15] considered all stateful ASAs detectable, and formalized
this by providing the state directly to U (the adversary in the detectability game), hence
any non-⊥ state would lead to detection. They called this “strong undetectability”. We
also include the definition from [BSKC19] in this comparison, since, to our knowledge,
they are the only other authors to include a state reset oracle in their detection analysis.
Their state reset oracle only resets the state variables to their initial values, and not to
any previously used values. A hierarchy here is clear, and we illustrate this in Figure 3.
The implications given can be seen by simply noting that with each game higher in the
hierarchy, the adversary U in the detectability game is given more capabilities with respect
to manipulation and knowledge of the state of the ASA.

In fact, in the rest of this section, we will see that for each implication in Figure 3, there
is a separation, meaning no two definitions are equivalent. First, in Subsubsection 3.1.1,
we will use a simple state reset to detect an ASA that is undetectable in the [BPR14]
model. In Subsubsection 3.1.2, we will use our more sophisticated state reset to detect an
ASA that is undetectable even with simple state resets. In Subsection 3.2, we will show
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that the original ASA of [BPR14], while detectable in the game of [BJK15] due to the use
of state, remains undetectable in our game. Note that these are not artificial constructions,
but rather existing ASAs, which are illustrating the significant differences between the
definitions in Figure 3.

3.1 Detection of ASAs using state reset

In this section we will look at published ASAs against different cryptographic primitives
and see that they are detectable using our notion of state reset detectability. This will
demonstrate that the addition of our state reset oracle does indeed make our notion of
detectability stronger than the basic definition used by [BPR14]. When we examine the
result from [BSKC19], we will see that our state reset oracle also places further restrictions
on ASAs wishing to achieve undetectability than their simple state reset oracle, which
only resets state to a null value.

3.1.1 Detecting Ateniese, Magri, and Venturi’s ASA using simple state reset

Ateniese, Magri, and Venturi [AMV15] describe two different symmetric algorithm substi-
tution attacks on signature schemes. The first is virtually identical to the attack described
by [BJK15]. The second is an attack on coin-extractable schemes (schemes for which the
randomness used to generate the signature can be efficiently extracted from the signature
itself). It works on any such scheme that makes use of at least a single bit of randomness.

Their attack on coin-extractable schemes works by having the subverted algorithm
maintain the state of a stateful pseudorandom generator. Under our definition of state
reset (or in fact even the simpler kind, resetting state to null values), their attack becomes
detectable: in their ASA, re-use of state of the pseudorandom generator leads to re-use of
the signature.

We first define some notation for signature schemes. A signature scheme SIG is composed
of three algorithms: SIG.KeyGen, SIG.Sign, and SIG.Ver. SIG.KeyGen randomly selects a
secret private key sk and a public verification key pk as a pair from the key space KSIG.
SIG.Sign is a randomized algorithm with coins r ∈ {0, 1}SIG.rlen. It takes a private key
and a message m ∈ MSIG and produces a signature s ∈ SSIG. SIG.Ver is a deterministic
algorithm, taking a public key, a signature, and a message, and returning a boolean value
indicating whether the signature passes verification.

Let G be a stateful pseudo-random generator with output length d = SIG.rlen, i.e. it
has input of some state t and outputs a pseudorandom output v of length d and new
state t′. Assume for simplicity that d divides |sk|. The subversion of [AMV15] is shown
in Figure 4a. On each execution of Sub.Sign, this ASA encrypts the next d bits of the
signing key, denoted by sk[`+ 1, `+ d], using G as a stream cipher. This encryption is then
used in place of the coins for the signature. Since the subverter can get the coins from the
signature and knows the embedded key, they can recover the signing key by decrypting
the recovered coins. We use the regular detectability game from Figure 2 with SIG as Λ
and SIG.Sign as Λ.Algλ to reason about the detectability of this ASA.

Detectability under SRDET can be seen as follows: The detector first calls the signing
oracle once with some message m and signing key sk, and the state is then set to
τ1 = (G(k̄), d). The detector then calls the reset oracle with j = 0, and τ2 is set to τ0 = ⊥.
On a second oracle call with the message m and signing key sk, τ3 is set to (G(k̄), d) as
before. Let s1 and s2 be the two signatures received. Note that the same v and ` values
were used, and hence the same r̃ value was used, to generate both signatures. Hence the
detector will observe that s1 = s2 with certainty, where this would only be the case some
small fraction of the time for an unsubverted scheme, yielding large detection advantage.
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Sub.Sign(sk,m, k̄, τ)
1. if τ = ⊥ then
2. τ ← (k̄, 0)
3. (t, `)← τ

4. if ` ≥ |sk| then
5. `← 0
6. (v, t)← G(t)
7. r̃ ← v ⊕ sk[`+ 1, `+ d]
8. τ ← (t, `+ d)
9. s← SIG.Sign(sk,m; r̃)

10. return (s, τ)

(a) ASA on signature
schemes, by Ateniese et al.
[AMV15]

Sub.Sign(x,m, k̄, τ)
1. if τ = ⊥ then
2. τ ← (0,⊥)
3. (j, σ)← τ

4. if j = 0 mod 2 then
5. κ←$ Zq
6. r ← H1(gκ)
7. s← κ

−1(H2(m) + xr) mod q
8. else
9. κ̃← H3(k̄, σ)

10. r ← H1(gκ̃)
11. s← κ̃

−1(H2(m) + xr) mod q
12. τ ← (j + 1, r)
13. return ((s, r), τ)

(b) ASA on DSA, by Baek et al.
[BSKC19]

Sub.Encaps(ek, pk, τ)
1. if τ = ⊥ then
2. τ ←$RKEM
3. else
4. t← KEM.kgen(ek, τ)
5. τ ← F(ek, t)
6. k ← KEM.kgen(pk, τ)
7. c← KEM.cgen(τ)
8. return (c, τ)

(c) ASA on KEMs, by
Chen et al. [CHY20]

Figure 4: ASAs for analysis in Section 3

3.1.2 Detecting Baek, Susilo, Kim, and Chow’s ASA using sophisticated state reset

Baek, Susilo, Kim, and Chow [BSKC19] describe a symmetric ASA against the Digital
Signature Algorithm (DSA). Using what they call a small amount of state, they are able
to recover the signing key from only 3 subverted signatures. In their paper, they even
consider state resets in their formalism of undetectability (and appear to be the first to
do so). However, their state resets only set the state back to a null value, and not any
previously used state. We show that under our stronger definition allowing resets to any
previous state, their subversion is easily detectable despite the small amount of state kept.

We again use the regular detectability game SRDET given in Figure 2, with SIG as Λ and
SIG.Sign as Λ.Algλ, but specify a few more details about the signature scheme SIG, since the
ASA from [BSKC19] is specific to DSA signatures. Let H1 and H2 be cryptographic hash
functions. Let G be a cyclic group of prime order q, and let g be a generator of that group.
We define x to be the signing key and y = gx be the verification key. The algorithm SIG.Sign
will first sample κ←$ Zq, and then return (r, s)← (H1(gκ), κ−1(H2(m) + xr) mod q).

Let H3 be a PRF. The ASA from [BSKC19] is shown in Figure 4b. The key idea here is
that the signing algorithm will only subvert one out of every two signatures. The signatures
are subverted by controlling the way the per-signature randomness κ is generated. A
signature is subverted by making the randomness used in a signature dependent on the
randomness used in the previous signature, in a way that can be reverse-engineered by the
subverter.

Under a state reset where the state is set to initial values, j is reset to 0 and the value
of σ is cleared. Then the next signature generated is always an unsubverted one. This
proper sampling of randomness leads to undetectability in this case, and indeed [BSKC19]
show this. However, if a detector is able to reset state to any previous value, this no longer
holds, since all later signatures after the first are deterministically generated based on
previous state. Observe the following attack on undetectability. The detector first calls
the signing oracle twice with some message m and signing key x, and the state is set to
τ1 = (1,H1(gκ)) on the first call, for some randomly chosen κ. The detector then calls the
reset oracle with j = 1 so that the next state τ3 is set to prior state τ1 = (1,H1(gκ)). The
detector then makes a third signing oracle call with the same message m and signing key x.
Let s2 and s3 be the s-values of the second and third signatures received, respectively. The
same value of κ̃ was used to generate both these signatures, so the detector will observe
that s2 = s3 with certainty, whereas this would be very unlikely in an unsubverted scheme.
Therefore after observing only 3 signatures, and using one state reset to a prior state, the
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detector’s detection advantage is extremely close to 1.

3.1.3 Detecting Chen, Huang, and Yung’s ASA using state resets

Chen, Huang, and Yung [CHY20] describe an asymmetric ASA against a key encapsulation
mechanism (KEM) which is stateful and recovers the encapsulated key using only two
consecutive encapsulation ciphertexts. Their subversion works on KEMs that can be
decomposed into specific sub-functions, most notably requiring that generation of the
ciphertext does not require the public encapsulation key, only the coins used to generate
the shared secret key. Furthermore, their attack is asymmetric, meaning it is undetectable
(under their definition) even if the key embedded into the subversion is known to the
detector. The subverter makes use of a corresponding private extraction key in order to
exploit the subversion.

A key encapsulation scheme KEM is composed of three algorithms: KEM.KeyGen,
KEM.Encaps, and KEM.Decaps. KEM.KeyGen randomly generates a secret decapsulation
key sk and a public encapsulation key pk. KEM.Encaps is a randomized algorithm with
coins r ∈ RKEM. It takes a public key and produces a ciphertext c ∈ CKEM, and a session
key k ∈ KKEM. For the ASA from [CHY20], we require that it decomposes into three
components:

1. r←$RKEM.
2. KEM.kgen, which takes as input public key pk and randomness r, is used to generate

key k ∈ KKEM.
3. KEM.cgen, which takes only the randomness r, outputs ciphertext c ∈ CKEM.

Finally, KEM.Decaps is a deterministic algorithm, takes a private key and a ciphertext,
and returns a session key k or an error.

Let F be a PRF which takes the embedded key ek and a value in RKEM and returns a
value in RKEM. The ASA from [CHY20] is given in Figure 4c. This ASA can be used to
recover the established shared key ki, i > 1, using the two consecutive ciphertexts ci−1 and
ci: since ci was not the first ciphertext sent, it was generated using subverted randomness
τi. Note that because ciphertext generation does not depend on the public encapsulation
key used, the same ciphertext ci−1 is generated for ki−1 with the legitimate encapsulation
key and for ti−1 with the subverter’s embedded key ek. Hence ti−1 can be obtained
by decapsulating ci−1 using xk: ti−1 ← KEM.Decaps(xk, ci−1). Then τi ← F(ek, ti−1).
This allows one to compute ki ← KEM.kgen(pk, τi), the shared key corresponding to the
ciphertext ci.

The detection game we use is ASRDET from Figure 2 with KEM as Λ and KEM.Encaps
as Λ.Algλ. This subversion is detectable under our definition. Observe the following
attack on undetectability. The detector first calls the encapsulation oracle twice with some
encapsulation key pk, and the state is set to τ1 = τ on the first call, for some randomly
chosen τ . The detector then calls the reset oracle with j = 1, and τ3 is set to τ3 = τ1 = τ .
The detector then makes a third encapsulation oracle call with the encapsulation key pk.
Let c2 and c3 be the ciphertexts received from the second and third encapsulation oracle
calls respectively. Note that the same value of τ was used to generate both ciphertexts.
Hence the detector will observe that c2 = c3 with certainty, whereas this would be very
unlikely in an unsubverted scheme. Thus, after observing only 3 ciphertexts, and using
one state reset to a prior state, the detector’s detection advantage is extremely close to 1.

Note that the detection methods for the ASA from [BSKC19] and the ASA from
[CHY20] are very similar. Both of these papers purported to have “small” state, which
should not be considered unreasonable in practical contexts. However, very simple state
resets, as could happen even accidentally with virtual machine images, will result in
guaranteed or very likely repetition of output, which is catastrophic for detection.
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3.2 Undetectability of Bellare, Paterson, and Rogaway’s ASA
Contrary to the results we’ve seen so far in this section, the original “biased ciphertext
attack” ASA on symmetric encryption by [BPR14] is still undetectable in our new frame-
work with state resets (specifically, SRDET). In fact, the majority of the proof provided
by [BJK15] of the undetectability of their ASA applies directly to the ASA of [BPR14],
even in the presence of the state reset oracle.

The subverted encryption algorithm used by [BPR14] is equivalent to the one given in
Figure 5a, where F is a PRF which takes a key and a ciphertext of SE.Enc and returns
a single bit, and s is a predetermined parameter of the subversion which bounds the
number of loops the ASA will execute before returning a value. This description looks very
similar to the ASA given in [BJK15]; indeed, we have essentially taken their subversion,
and re-included the index-as-state technique that they removed when presenting their
improvement over the ASA from [BPR14].

Theorem 1. Let U be an adversary in the regular state reset detectability game in Figure 2,
SRDETSub(U), with symmetric encryption scheme SE as Λ and SE.Enc as Λ.Algλ, where
Sub.Enc is the algorithm given in Figure 5a. If n is the number of queries that U makes to
its encryption oracle and η is the min-entropy of SE.Enc, then there is an adversary F in
the PRFF(F) game such that AdvSRDET

Sub (U) ≤ 2AdvPRF
F (F) + n2s2 · 2−η−1. The running

time of F is about that of U , and F makes at most ns oracle queries.

Proof. As much of this proof is the same as that given by [BJK15], we will only include
some details. We proceed by a sequence of games. Let H0 be the regular state reset
detectability game of Figure 2 with the appropriate substitutions mentioned in the theorem
statement. Let H1 be the same as H0 but with F replaced by a lazily-sampled random
function of c. Let H2 be the same as H1 but with the lazily-sampled random function
replaced by fully random sampling of w. Let H3 be the regular state reset detectability
game where the encryption oracle simply returns c←$ Enc(k,m), and the Reset oracle has
no effect.

The first game change is standard, and proceeds exactly as described by [BJK15],
with |Pr[H1]− Pr[H0]| = 2AdvPRFF (F) for an adversary F . The second game change also
proceeds identically to the description given by [BJK15]: in order to replace the lazily
sampled random function with true random sampling, we must bound the probability that
some value of c is repeated during the game. Call this event P . Since the number of loops
for each oracle call is bounded by s, the probability of P occurring is therefore bounded
by
(
ns
2
)
· 2−η ≤ n2s2 · 2−η−1, where n is the number of queries to the oracle and η is the

min-entropy of SE.Enc. Thus we have |Pr[H2]− Pr[H1]| ≤ n2s2 · 2−η−1.
Now we have game H2, shown in Figure 5b. We argue that H2 is equivalent to H3.

In particular, we argue that the implementation of Sub.Enc in the encryption oracle of
H2 is identical to SE.Enc. To see this, note that, despite any runs of the Reset oracle,
the value of k[τ ] is fixed at the start of an oracle call. Since w is sampled randomly, the
decision of which c to return is independent of the state τ , and is in fact the same as
simply sampling coins r and returning the resulting ciphertext c. This is precisely SE.Enc.
Therefore Pr[H3] = Pr[H2].

In H3, since the oracle behaviour is independent of b, we have that Pr[H3] = 1
2 . Putting

together all these results, we have

AdvSRDET
Sub (U) ≤ 2AdvPRF

F (F) + n2s2 · 2−η−1,

as desired.

The number of queries n is polynomially bounded, and 2−η is negligible for most
randomized schemes. The value of s can be set to a small constant without a strong effect
on the success of the ASA, and we assume that 2AdvPRF

F (F) is small for a good PRF F.
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Sub.Enc(k,m, k̄, τ)
1. if τ = ⊥ then τ ← 0
2. else τ ← τ + 1 mod |k|
3. j ← 0
4. do
5. j ← j + 1
6. r←$ {0, 1}SE.rlen

7. c← Enc(k,m; r)
8. w ← F(k̄, c)
9. until k[τ ] = w or j = s

10. return (c, τ)

(a) ASA of [BPR14], where
s is a predetermined parame-
ter.

H2

1. k̄←$ Sub.KeyGen()
2. i← 1
3. τ0 ← ⊥
4. b←$ {0, 1}
5. b

′←$ UOEnc,Reset

6. return b = b
′

Reset(j), 0 ≤ j < i

1. if b = 1 then
2. τi ← τj
3. i← i+ 1

OEnc(k,m)
1. if b = 0 then c←$ Enc(k,m)
2. if b = 1 then
3. if τ = ⊥ then τ = 0
4. else τ ← τ + 1 mod |k|
5. j ← 0
6. do
7. j ← j + 1
8. r←$ {0, 1}SE.rlen

9. c← SE.Enc(k,m; r)
10. w←$ {0, 1}
11. until k[τ ] = w or j = s

12. τi ← τ ; i← i+ 1
13. return c

(b) The game H2 for the proof of Theorem 1.

Figure 5: ASA on symmetric encryption by Bellare, Paterson, and Rogaway [BPR14] and
game for proof of its undetectability in Theorem 1.

Hence we can conclude from Theorem 1 that the ASA defined in Figure 5a is undetectable
under state resets, even to any prior state.

3.3 Discussion
The reader may find the results in this section to not be technically deep, and indeed
they would be correct. We included significant details nonetheless in order to demonstrate
precisely the implications of our model. Firstly, the simplicity of the state reset detection
attacks in Subsection 3.1 raise the question of why these attacks were not considered in a
formal manner previously in the literature, despite being pointed out as early as [BJK15].
Secondly, the similarity of the proof in Subsection 3.2 to the proofs of [BJK15] raises the
question of why the norm of stateful schemes being considered less desirable was adopted
so readily.

Perhaps there is reason not to consider such a strong notion of state reset in certain
circumstances. However, the above results do show a couple things conclusively. Firstly, for
researchers who avoid or discount stateful schemes, it should be made clear what detection
threat model they are working in. Secondly, for researchers who develop stateful schemes,
undetectability should be proven in a formal model including some version of state reset,
or detection methods in such a framework should be acknowledged. As we have previously
mentioned, we believe our notion of state reset is a good choice for analysis, as it formalizes
the kind of resets that can occur during virtual machine cloning and rebooting, but weaker
models might be justified depending on the threat model.

4 A Type 1 Asymmetric ASA on Symmetric Encryption
Now that we have established a good framework from which to evaluate the undetectability
of stateful ASAs, we will present a simple modification to the subversion from [BPR14] to
get a type 1 asymmetric ASA on a symmetric encryption scheme. Recall that a type 1
asymmetric ASA must be undetectable in the augmented state reset detectability game
ASRDET of Figure 3.

In order to construct an asymmetric ASA which is undetectable against an adversary
with the embedded key, we will use an additional building block: public-key encryption with
ciphertexts that are indistinguishable from random. We recall the notion of ciphertext indis-
tinguishability from random bits for public-key encryption schemes: let PKE be a public-key
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IND$PKE(B)
1. (pk, sk)←$ PKE.KeyGen()
2. b←$ {0, 1}
3. b

′←$ BOPKE.Enc (pk)
4. return b = b

′

OPKE.Enc(m)
1. if b = 0 then
2. c←$ PKE.Enc(pk,m)
3. if b = 1 then
4. c←$ {0, 1}PKE.clen

5. return c

Figure 6: The ciphertext indistinguishability-from-random game for a public-key encryption
scheme PKE.

encryption scheme, and consider the game in Figure 6. In this game, adversary B is tasked
with deciding whether the oracle provided to it is returning encryptions under PKE.Enc
or random bits. The advantage of B is defined as AdvIND$

PKE (B) = |Pr[IND$PKE(B)] − 1
2 |.

Informally, we say that the scheme PKE is IND$-secure if the advantage of any efficient
adversary B is small.

We present our asymmetric ASA, ASub, against a symmetric encryption scheme SE,
in Figure 7. This ASA uses an IND$-secure public-key encryption scheme PKE, and a
parameter s to bound the number of loops the ASA will execute before returning a value.
The essence of the subversion is that the secret key to be exfiltrated is encrypted using
the public-key encryption scheme, then a technique similar to that used by [BPR14] is
used to leak the resulting ciphertext. The subverter can recover the key by decrypting the
extracted ciphertext.

ASub.Enc(k,m, ek, τ)
1. if τ = ⊥ then
2. σ ← 0;κ←$ PKE.Enc(ek, k)
3. else (σ, κ)← τ

4. if σ = PKE.clen then
5. σ ← 1;κ←$ PKE.Enc(ek, k)
6. else σ ← σ + 1
7. j ← 0
8. do
9. j ← j + 1

10. r←$ {0, 1}SE.rlen

11. c← SE.Enc(k,m; r)
12. w ← F(ek, c)
13. until κ[σ] = w or j = s

14. τ ← (σ, κ)
15. return (c, τ)

Figure 7: Our type 1 asymmetric
ASA on symmetric encryption.

In practice, the main advantage to a type 1 asym-
metric ASA lies in the fact that the subverter main-
tains possession of all information required to com-
plete their attack. This differs from the symmetric
case, where the same key used to extract values from
the target user is also embedded in the algorithm
that the target user is using. There are practical
situations in which it may be relevant to consider
the possibility of a detector who knows ek. For ex-
ample, suppose the user is aware of other subverted
implementations, for which the corresponding ek is
known, and wishes to test if the implementation they
are using has also been subverted with the same key.
In this section, we will consider the user U as being
the detector with knowledge of the key ek. Indeed, if
an ASA is undetectable in our augmented detection
game ASRDET, then neither the user nor anyone
else without the key xk is able to detect the ASA,
and hence no third party is able to exploit the ASA

either. In Section 5, we will consider a type 2 asymmetric ASA, which is undetectable to a
user without ek, and detectable to, but nonetheless still secure against, a third party with
knowledge of ek. This will more fully explore the nuance associated with the benefits of
an asymmetric ASA with respect to all parties who may possibly be involved.

The main drawback of an asymmetric ASA, especially when it comes to attacking sym-
metric schemes, is speed. An asymmetric ASA that makes use of asymmetric cryptography
will inevitably be slower than the symmetric algorithms being subverted. This exacerbates
an existing issue with many ASAs that rely on coin rejection sampling, including ours:
since the algorithm being subverted must be run multiple times, a detector could time
the execution of the algorithm and conclude that a slower algorithm is subverted (this
side-channel attack is not captured in our framework). We do note, however, that our ASA
uses far fewer executions of asymmetric algorithms than symmetric ones, and moreover
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the asymmetric executions can be done ahead of time (but must be after the algorithm
substitution has occurred). One could imagine a clever implementation of our ASA where
the evaluation of PKE.Enc is spread out over many calls to ASub.Enc, amortizing the time
penalty added by the use of a public-key encryption scheme.

4.1 Undetectability of our type 1 asymmetric ASA
The following theorem shows that ASub of Figure 7 is undetectable in the augmented state
reset detectability game ASRDET, when modeling F as a random oracle.

Theorem 2. Let U be an adversary in the augmented state reset detectability game in
Figure 2, ASRDETASub(U), with symmetric encryption scheme SE as Λ and SE.Enc as
Λ.Algλ, where ASub.Enc is the algorithm given in Figure 7. Assume that F is an ideal
hash function, which we model as a random oracle H. If n, q are the number of queries
that U makes to its encryption oracle and the random oracle respectively, and η is the
min-entropy of SE.Enc, then there is an adversary B against the IND$-security of PKE
such that AdvASRDET

ASub (U) ≤ 2AdvIND$
PKE (B) + ((ns)2 + 2nsq−ns) · 2−η−1. The running time

of B is about that of U and B makes n queries to its own encryption oracle.

Proof. Consider the augmented state reset detectability game of Figure 2, with all the
substitutions in the theorem statement, and F modeled as the random oracle H provided
to the adversary U . This is shown in Figure 8, as G0. The oracle H only takes input c,
since ek is fixed throughout the game.

We proceed by a sequence of games G0, ..., G4, as shown in Figure 8. Let G0 be the
undetectability game with the random oracle implementation. G1 is the same as G0 but
with κ sampled randomly instead of computed as an encryption of k. G2 and G3 are shown
in Figure 8. G4 is the augmented state reset detectability game where the encryption
oracle is replaced by an oracle that simply returns SE.Enc(k,m).

Let B be an adversary to the IND$ game for PKE. The adversary B will act as a
challenger in the game G0 with a few small changes: it will not generate a key pair itself,
instead using the public key pk provided to it in the IND$ game; it will return 1 if U
correctly guesses the bit b and 0 otherwise; and it will use its provided OPKE.Enc oracle in
the place of PKE.Enc. This can all be done efficiently. In this way, B interpolates between
games G0 and G1. In particular, let b$ denote the bit from the IND$PKE(B) game. Note
that if b$ = 1, then the Enc oracle simulated by B proceeds exactly as in game G1, and if
b$ = 0, then it proceeds exactly as in game G0. Thus we have Pr[B ⇒ 1 | b$ = 1] = Pr[G1],
Pr[B ⇒ 1 | b$ = 0] = Pr[G0], and hence |Pr[G1]− Pr[G0]| = 2AdvIND$

PKE (B).
Next, consider G2 shown in Figure 8. We claim that Pr[G2] = Pr[G1]. To see this,

note that lines 1–10 of the Helper1 function simply act as bookkeeping in order to use a
single bit of κ for each encryption, and to generate a new κ once we’ve iterated through
its bits. The index σ is used to iterate through κ and κ is re-sampled when all the bits are
used. This procedure is identical to sampling a single random bit for each call, hence our
equality. Notice also that this removes any dependence on the state, and so the state reset
oracle no longer has any function. The only other change is the addition of a bad variable,
used in the next game transition.

In game G3, shown in Figure 8, we replace the selection of w in the encryption oracle
with true random sampling of w, regardless of whether c was input to the random oracle
before. Let Col be the event where bad is set to true in game G2. This happens when
some c previously generated by the encryption oracle or previously queried in the random
oracle is obtained again during an encryption oracle query. We can bound Pr[Col] from
above by considering the case where all the random oracle queries happen before the
encryption oracle queries. Let η be the min-entropy of SE.Enc. Then we have that
Pr[Col] ≤

((
ns+q

2
)
−
(
q
2
))
· 2−η = ((ns)2 + 2nsq − ns) · 2−η−1.
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G0,1,2,3,4(U)
1. ek, xk←$ ASub.KeyGen()
2. C ← ∅

3. i← 1
0,1

4. τ0 ← ⊥
0,1

5. b←$ {0, 1}

6. b
′←$ UOEnc,Reset,H(ek)

0,1

7. b
′←$ UOEnc,H(ek)

2,3

8. b
′←$ USE.Enc,H(ek)

4

9. return b = b
′

Reset(j), 0 ≤ j < i

1. if b = 1 then
2. τi ← τj
3. i← i+ 1

H(c)
1. if c /∈ C then
2. wc←$ {0, 1}
3. C ← C ∪ {c}
4. return wc

OEnc(k,m)
1. if b = 0 then c←$ SE.Enc(k,m)
2. if b = 1 then

3. (c, τi)←$ Helper0/1(k,m, ek, τi−1)
1,2

4. c←$ Helper2/3(k,m, ek)
2,3

5. i← i+ 1
1,2

6. return c

Helper0/1(k,m, ek, τ)
1. if τ = ⊥ then

2. κ←$ PKE.Enc(ek, k)
0

3. κ←$ {0, 1}PKE.clen

1
4. σ ← 0
5. else (σ, κ)← τ

6. if σ = PKE.clen then
7. σ ← 1

8. κ←$ PKE.Enc(ek, k)
0

9. κ←$ {0, 1}PKE.clen

1
10. else σ ← σ + 1
11. j ← 0
12. do
13. j ← j + 1
14. r←$ {0, 1}SE.rlen

15. c← SE.Enc(k,m; r)
16. if c /∈ C then
17. wc←$ {0, 1}
18. C ← C ∪ {c}
19. w ← wc
20. until κ[σ] = w or j = s

21. τ ← (σ, κ)
22. return (c, τ)

Helper2/3(k,m, ek)
1. κ←$ {0, 1}
2. j ← 0
3. do
4. j ← j + 1
5. r←$ {0, 1}SE.rlen

6. c← SE.Enc(k,m; r)

7. if c /∈ C then
2

8. wc←$ {0, 1}
9. C ← C ∪ {c}

10. else bad← true
2

11. w ← wc
12. until κ = w or j = s

13. return c

Figure 8: Games G0 through G4 for the proof of Theorem 2. For boxed code, only the
games indicated in the subscripts contain that code.

By the Fundamental Lemma of Game-Playing [BR06], we have |Pr[G3]− Pr[G2]| ≤
Pr[Col] ≤ ((ns)2 + 2nsq − ns) · 2−η−1.

Finally, G4 is the detectability game where the encryption oracle is replaced by an
oracle that simply returns SE.Enc(k,m). In game G3, since the loop condition is no
longer dependent on the selection of c, the Helper3 is identical to SE.Enc(k,m). Hence
Pr[G3] = Pr[G4]. Further, note that Pr[G4] = 1

2 , since the encryption oracle is not
dependent on b.

Putting all these results together, we have

AdvASRDET
ASub.Enc (U) ≤ 2AdvIND$

PKE (B) + ((ns)2 + 2nsq − ns) · 2−η−1,

as desired.

Assuming that PKE is IND$-secure and that n and q are small in comparison to 2η,
which is the case for a sufficiently randomized encryption scheme, Theorem 2 shows that
the ASA given by the subversion in Figure 7 is undetectable in the augmented state reset
detection game ASRDET, proving our claim that ASub is a type 1 asymmetric ASA.
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4.2 Key recovery of our type 1 asymmetric ASA
The goal of the ASA presented in Figure 7 is to recover the secret key k used in the
encryption algorithm SE.Enc. Some authors, such as [BJK15], have treated key recovery
formally with a key recovery game. Their approach largely carries over here, and one could
readily develop a theorem bounding from below the probability that the subverter can
recover the secret key for our ASA. We will only outline the ideas involved to give the
reader a good sense of how key recovery works.

Once the subverted algorithm is being used by a user, the subverter will attempt to
recover the secret key k by observing the generated ciphertexts. These ciphertexts are
generated according to a message distribution that the subverter has no control over, and
hence the recovery strategy will be independent of the messages used. For our ASA, the
subverter can use the following method to recover the secret key:

1. Collect ciphertexts c1, ..., cn.
2. Group ciphertexts together into consecutive groups of size PKE.clen.
3. For each ciphertext cσ in each group, compute wσ = F(ek, cσ).
4. For each resulting group of bits, concatenate all the wσ to obtain κ and compute
k′ = PKE.Dec(xk, κ).

5. Each k′ obtained in step 4 is a candidate for k.

We can estimate the probability of success of key recovery. We make a few simplifying
assumptions; namely, that F is a good PRF, and that there is sufficient randomness
in SE.Enc so that no two of the ciphertexts c1, ..., cn are the same. The effect of these
assumptions can be quantified2, but we will omit those details here, and simply note that
such quantification will result in 2AdvPRF

F (F) + n2s2 · 2−η−1, where η is the min-entropy
of SE.Enc and F is a PRF adversary, being subtracted from the probability of key recovery.
These assumptions allow us to calculate the success probability when all the w values are
randomly generated, which is much simpler.

Suppose that PKE is a δ-correct public-key encryption scheme. Let n be the total
number of ciphertexts intercepted by the subverter. For each group of PKE.clen ciphertexts
(of which there are bn/PKE.clenc), the probability that every ciphertext c in the group
was chosen to successfully leak a bit (κ[σ] = F(ek, c)) is (1 − 2−s)PKE.clen (this is where
we assume each w is random), and the probability that the group decrypts correctly
is δ. Hence the probability that one of the keys k′ obtained in step 5 is the key k is
Pkr = 1 −

(
1− δ(1− 2−s)PKE.clen)b n

PKE.clen c. As an example, suppose PKE.clen = 400 (an
IND$-secure public-key scheme with ciphertext lengths around this is given by Möller
[Möl04]), n = 1600, s = 7, and δ = 1. Then Pkr ≥ 0.6. The value of s can easily be
increased to improve this probability, for example, if δ is lower, PKE.clen is higher, or the
number of ciphertexts n that the subverter can intercept is small.

4.2.1 Key recovery in the presence of state resets

We note here that if the the user of the encryption scheme performs regular state resets
of the type used in the detection scenario, then key recovery becomes very unlikely for
this ASA. Since the entire PKE ciphertext κ must be exfiltrated before the subverter is
able to decrypt it to recover k, reset of state would restart the process of key recovery.
Since κ is required to be indistinguishable from random, we do not have the option of
reconstructing the same κ after a state reset. With PKE.clen = 400, a state reset after
every 399 encryptions would successfully thwart this ASA.

2There are several examples of this in the literature, as well as in our proof of Theorem 2 in the previous
subsection.
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Such a defense may or may not be practical, depending on the specific implementation
of the encryption scheme and the execution environment. For example, a user may
not have sufficient access to an encryption scheme provided to them as a black-box to
perform such state resets, and would rely on the provider of the encryption service to
include such a mitigation. Furthermore, the performance impacts may be significant.
Clearing sections of memory between encryptions may be a quick operation, but the ASA
may decide to place state in storage instead (at increased risk of being detected from
storage monitoring). Resetting to a previous virtual machine image would thwart this as
well, but at increased performance cost. Such performance penalties may be mitigated
by containerized implementations of cryptographic schemes. We encourage future work
on the feasibility of this approach, and more generally on the use of state resets as a
countermeasure to ASAs.

5 A Type 2 Asymmetric ASA on Symmetric Encryption
In the last section, we presented a type 1 asymmetric ASA, where no other parties besides
the subverter, even if they have the embedded key ek, would be able to detect the subversion.
In this section we will explore a more nuanced requirement of undetectability. In fact, we
will present an asymmetric ASA that is detectable in the augmented detectability game in
Figure 2, but undetectable in the regular detectability game. This is a type 2 asymmetric
ASA.

To see why such an ASA may still be relevant, consider again the context of an ASA.
There are three relevant parties: the subverter, the user U , and some third party V. The
subverter is executing an algorithm substitution attack on U . It is critically important
that U is not able to detect the ASA, since then U will stop using the subverted scheme.
The subverter relies on the fact the U is not able to examine the code being used. Hence
the situations in which U knows the embedded key ek, but does not already know of the
subversion, are limited. With this reasoning, we can restrict ourselves to evaluating the
detectability of an ASA with respect to a user U only in the regular detectability game,
regardless of whether or not the ASA is symmetric or asymmetric.

On the other hand, the requirements on the third party V are different, and for a type
2 asymmetric ASA we will allow for the possibility that a sophisticated third party V is
able to reverse-engineer the cryptographic scheme and obtain the key ek or outright detect
the scheme in this way. Such a V may not have decision-making authority to change the
scheme being used, so it may not be catastrophic for V to be able to detect the ASA.
Hence requiring augmented undetectability with respect to V is not necessary. The real
requirement for a type 2 asymmetric ASA is that the subverter is the only one able to take
advantage of the subversion and break the security of the subverted scheme. To reflect this,
we can simply require that the subverted algorithm ASub.Algλ preserve security properties
of the original algorithm Λ.Algλ.3

The situation described above admittedly has stronger behavioural assumptions on
the involved parties than the one we covered in Section 4, where we proved that even V
would not be able to detect the subversion. The reason that we wish to consider this more
restricted context is that we will be able to construct a type 2 asymmetric ASA (one that
satisfies the above notion of undetectability) that is less susceptible to detection via timing
side channels. We will still use a repetition parameter s in the same way as in the ASA
from Section 4, but key recovery will be possible with a smaller s.

Before continuing, we will define the notions of IND-CPA security for symmetric and
3A version of security preservation appears in Appendix A of the eprint version of [DFP15]. The

authors obtained an elegant result relating the security of a subverted scheme to the security of the original
scheme and the detectability of the ASA by an adversary who is in possession of the key k. However, they
only considered symmetric ASAs; the asymmetric case is certainly different.
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IND-CPASE(B)
1. k←$ SE.KeyGen()
2. b←$ {0, 1}
3. b

′←$ BOSE.Enc

4. return b = b
′

OSE.Enc(m)
1. if b = 0 then
2. c←$ SE.Enc(k,m)
3. if b = 1 then
4. c←$ SE.Enc(k, 0)
5. return c

IND-CPAPKE(B)
1. (pk, sk)←$ PKE.KeyGen()
2. b←$ {0, 1}
3. b

′←$ BOPKE.Enc (pk)
4. return b = b

′

OPKE.Enc(m)
1. if b = 0 then
2. c←$ PKE.Enc(pk,m)
3. if b = 1 then
4. c←$ PKE.Enc(pk, 0)
5. return c

Figure 9: The IND-CPA games for (left) a symmetric encryption scheme SE and (right) a
public-key encryption scheme PKE.

asymmetric encryption. This is a weaker form of security than IND$ we used in Section 4
(which implicitly was in chosen-plaintext form), but it is all we will require in this section.

The IND-CPA games for symmetric encryption scheme SE and public-key encryption
scheme PKE are given in Figure 9.

The advantage of B at each of these games is AdvIND-CPA
PKE (B) = |Pr[IND-CPAPKE(B)]−

1
2 | and AdvIND-CPA

SE (B) = |Pr[IND-CPASE(B)]− 1
2 |. Informally, we say that the schemes

PKE and SE are IND-CPA-secure if the advantage of any efficient adversary B in the
corresponding game is small.

We use a “multi-challenge” IND-CPA game, where B is not limited to a single challenge
ciphertext from which it has to guess. This multi-challenge game has been used, for
example, by Rogaway [Rog04]. We choose to use this particular notion, as it more closely
resembles our detectability games, leading to proofs that are easier to follow. Security of
multi-challenge IND-CPA follows from single-challenge security using a hybrid argument.

We now present our type 2 asymmetric ASA ASub2. Let SE be a symmetric encryption
scheme. Let PKE be an IND-CPA-secure public-key encryption scheme, and let F be a
PRF with output space {1, ...,PKE.clen} × {0, 1}. Then ASub2, an ASA on SE is shown
in Figure 10, where s is a parameter of the subversion to bound the loops as before.

ASub2.Enc(k,m, ek, τ)
1. if τ = ⊥ then
2. κ←$ PKE.Enc(ek, k); τ ← κ

3. else κ← τ

4. j ← 0
5. do
6. j ← j + 1
7. r←$ {0, 1}SE.rlen

8. c← SE.Enc(k,m; r)
9. (σ,w)← F(ek, c)

10. until κ[σ] = w or j = s

11. return (c, τ)

Figure 10: Our type 2 asymmetric
ASA on symmetric encryption.

The function ASub2.Enc bears many similari-
ties to ASub.Enc from Section 4 and to the ASA
of [BJK15]. In fact, the ASA ASub essentially con-
sists of encrypting k to κ using IND$-secure public-
key encryption, and then leaking κ using the same
techniques as [BPR14]. The ASA ASub2, on the
other hand, consists of encrypting k to κ using IND-
CPA-secure public-key encryption, and then leaking
κ using the same techniques as [BJK15]. We will
explore some of these parallels in Section 6.

The fundamental difference between the two
ASAs ASub and ASub2, as well as the reason for no
longer requiring PKE to be IND$, becomes evident
when we consider how an adversary V in possession
of the key ek is able to interact with the scheme.
Informally, the subverter is able to obtain k because anyone with ek can obtain κ, and
the subverter can obtain k from κ using xk. In the case of ASub, we required PKE to be
IND$ so that the adversary V would not be able to distinguish the κ they obtain by this
process from random bits. Making sure to never leak the same bit of κ twice, we proved
that this makes the scheme undetectable. For the ASA ASub2, even an IND$ scheme
would not provide this guarantee. Re-use of the same κ for more than |κ| encryptions is
required: randomization of the leaked bit of κ on each execution means that V cannot
be sure all have been leaked. Therefore all (index, bit)-pairs that V receives using this
decoding process that have the same index will also have the same bit with certainty, and
this is unlikely in an unsubverted scheme. While not undetectable, we can still show that
the subverted scheme is secure against V , implying that V is not able to recover the secret
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I1/2(U)
1. (ek, xk)←$ ASub2.KeyGen()
2. C ← ∅
3. i← 1
4. τ0 ← ⊥
5. b←$ {0, 1}
6. b

′←$ UOEnc,Reset

7. return b = b
′

Reset(j), 0 ≤ j < i

1. if b = 1 then
2. τi ← τj
3. i← i+ 1

OEnc(k,m)
1. if b = 0 then c←$ Enc(k,m)
2. if b = 1 then
3. (c, τi)←$ Helper(k,m, ek, τi−1)
4. i← i+ 1
5. return c

Helper(k,m, ek, τ)
1. if τ = ⊥ then
2. κ←$ PKE.Enc(ek, k); τ ← κ

3. else κ← τ

4. j ← 0
5. do
6. j ← j + 1
7. r←$ {0, 1}SE.rlen

8. c← SE.Enc(k,m; r)

9. if c /∈ C then
10. (σc, wc)←$ {0, ...,PKE.clen} × {0, 1}
11. C ← C ∪ {c}

12. else bad← true
13. σ, w ← σc, wc
14. until κ[σ] = w or j = s

15. return (c, τ)

Figure 11: Games I1 and I2 for the proof of Theorem 3. Game I1 contains the boxed code
while game I2 does not (including the appropriate indentation corrections).

key in the same way as the subverter.
In the rest of this section, we will prove that ASub2 is a type 2 asymmetric ASA. That

is, we will prove that the scheme is (1) undetectable to the user U in the regular detection
game, (2) secure against the third party V, and (3) that the subverter can recover the
secret key k.

5.1 Undetectability of our type 2 asymmetric ASA
We first prove undetectability of ASub2 against an adversary U in the regular state reset
detectability game SRDET.

Theorem 3. Let U be an adversary in the regular state reset detectability game in Figure 2,
SRDETASub2(U), with symmetric encryption scheme SE as Λ and SE.Enc as Λ.Algλ, where
ASub2.Enc is the algorithm given in Figure 10. If n is the number of queries that U makes
to its encryption oracle, and η is the min-entropy of SE.Enc, then there is an adversary
F against the PRF-security of F such that AdvSRDET

ASub (U) ≤ 2AdvPRF
F (F) + (ns)2 · 2−η−1.

The running time of F is about that of U , and F makes at most ns oracle queries.

Proof. We proceed by a sequence of games. Let I0 the regular state reset detectability
game of Figure 2, with all the substitutions in the theorem statement. Let I1 be the same
as I0 but with F replaced by lazy random sampling; this is given in Figure 11. Let I2 be
the same as I1 but with w and σ sampled randomly instead; this is also given in Figure 11.
Let I3 be the regular state reset detectability game where the encryption oracle is replaced
by an oracle that simply returns SE.Enc(k,m), and the Reset oracle removed.

Consider first games I0 and I1. Similarly to the proof of Theorem 3, this is a straight-
forward gamehop based on indistinguishability of the PRF F, so we omit the detailed
reduction. Instead, note that an adversary F in the PRFF(F) game is able to completely
simulate the games I0 and I1 for an adversary U using the oracle provided to it in place
of F. Let bPRF be the challenge bit in the PRF game. Then if bPRF = 1, the Enc oracle
simulated by F proceeds exactly as in game I1, and if bPRF = 0, then it proceeds exactly as
in game I0. Thus we have Pr[F ⇒ 1 | bPRF = 1] = Pr[I1], Pr[F ⇒ 1 | bPRF = 0] = Pr[I0],
and hence |Pr[I1]− Pr[I0]| = 2AdvPRF

PKE (F).
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IND-CPA′ASub2(V)
1. (ek, xk)←$ ASub2.KeyGen()
2. k←$ SE.KeyGen()
3. τ ← ⊥
4. b←$ {0, 1}
5. b

′←$ VOASub2.Enc (ek)
6. return b = b

′

OASub2.Enc(m)
1. if b = 0 then
2. (c, τ)←$ ASub2.Enc(k,m, ek, τ)
3. if b = 1 then
4. (c, τ)←$ ASub2.Enc(k, 0, ek, τ)
5. return c

Figure 12: The IND-CPA′ game for asymmetric ASA ASub2.

Now consider games I1 and I2. In game I2, we replace the selection of w and σ in
the encryption oracle with true random sampling of w and σ, regardless of whether c was
input to the random oracle before. Let Col be the event where bad is set to true in game I2.
This happens when some c previously generated by the encryption oracle is obtained again
during an encryption oracle query. We upper bound Pr[Col]: let η be the min-entropy of
SE.Enc. Then we have that Pr[Col] ≤

(
ns
2
)
· 2−η ≤ (ns)2 · 2−η−1.

By the Fundamental Lemma of Game-Playing [BR06], we have |Pr[I2] − Pr[I1]| ≤
Pr[Col] ≤ (ns)2 · 2−η−1.

Finally, I3 was defined as the detectability game where the encryption oracle is replaced
by an oracle that simply returns SE.Enc(k,m). In game I2, since the loop condition is
no longer dependent on the selection of c, the implementation ASub2.Enc2 is identical to
SE.Enc(k,m). Hence Pr[I2] = Pr[I3]. Further, note that Pr[I3] = 1

2 , since the encryption
oracle in I3 is not dependent on b.

Putting all these results together, we have

AdvSRDET
ASub2 (U) ≤ 2AdvPRFF (F) + (ns)2 · 2−η−1,

as desired.

5.2 Security of our type 2 asymmetric ASA
We prove here that the ASA ASub2 is secure against an adversary V who has knowledge
of ek. “Secure”, here, should mean in the same sense as the original symmetric encryption
scheme: IND-CPA. However, we cannot apply this notion directly to ASub2, since the
IND-CPA game does not provide the necessary parameters. Instead, we introduce the
modified game IND-CPA′ on ASub2 with adversary V, shown in Figure 12. This game
contains the required modifications to Figure 9 in order to include the function ASub2.Enc,
as well as providing the embedded key ek to the adversary V. Assuming that SE.Enc is
IND-CPA secure, we say that ASub2.Enc is secure if it is IND-CPA′ secure against V.

Theorem 4. Let SE be a symmetric encryption scheme, and let ASub2 be the ASA
on SE given by the description in Figure 10. Let V be an adversary in the game
IND-CPA′ASub2.Enc(V). Then there is an adversary B1 against the IND-CPA security of
PKE and an adversary B2 against the IND-CPA security of SE such that AdvIND-CPA′

ASub2 (V) ≤
2AdvIND-CPA

PKE (B1) + 2AdvIND-CPA
SE (B2). The running time of B1 and B2 are both about that

of V. If n is the number of oracle queries that V makes, then B1 makes n queries to its
own oracle, and B2 makes at most ns queries to its own oracle.

Proof. We proceed by a sequence of games. Let J0 be the IND-CPA′ASub2.Enc(V) game.
Let J1 be the same as J0 but with κ computed as an encryption of 0 instead of as an
encryption of k. Let J2 be the same as J1 but with c computed as an encryption of 0
instead of as an encryption of m. All of these games are shown in Figure 13.
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J0,1,2(V)
1. (ek, xk)←$ ASub2.KeyGen()
2. k←$ SE.KeyGen()
3. τ ← ⊥
4. b←$ {0, 1}
5. b

′←$ VOEnc (ek)
6. return b = b

′

OEnc(m)
1. if b = 0 then
2. (c, τ)←$ Helper(k,m, ek, τ)
3. if b = 1 then
4. (c, τ)←$ Helper(k, 0, ek, τ)
5. return c

Helper(k,m, ek, τ)
1. if τ = ⊥ then

2. κ←$ PKE.Enc(ek, k)
0

3. κ←$ PKE.Enc(ek, 0)
1,2

4. τ ← κ

5. else κ← τ

6. j ← 0
7. do
8. j ← j + 1
9. r←$ {0, 1}SE.rlen

10. c← SE.Enc(k,m; r)
0,1

11. c← SE.Enc(k, 0; r)
2

12. (σ,w)← F(ek, c)
13. until κ[σ] = w or j = s

14. return (c, τ)

BOPKE.Enc
1 (pk)
1. k←$ SE.KeyGen()
2. τ ← ⊥
3. b1←$ {0, 1}
4. b

′
1←$ VOEnc (pk)

5. if b1 = b
′
1 return 1

6. else return 0

OEnc(m)
1. if b1 = 0 then
2. (c, τ)←$ Helper(k,m, pk, τ)
3. if b1 = 1 then
4. (c, τ)←$ Helper(k, 0, pk, τ)
5. return c

Helper(k,m, pk, τ)
1. if τ = ⊥ then

2. κ←$OPKE.Enc(k)

3. τ ← κ

4. else κ← τ

5. j ← 0
6. do
7. j ← j + 1
8. r←$ {0, 1}SE.rlen

9. c← SE.Enc(k,m; r)

10. (σ,w)← F( pk , c)

11. until κ[σ] = w or j = s

12. return (c, τ)

BOSE.Enc
2

1. (ek, xk)←$ PKE.KeyGen()
2. τ ← ⊥
3. b2←$ {0, 1}
4. b

′
2←$ VOEnc (ek)

5. if b2 = b
′
2 return 1

6. else return 0

OEnc(m)
1. if b2 = 0 then
2. (c, τ)←$ Helper(k,m, ek, τ)
3. if b2 = 1 then
4. (c, τ)←$ Helper(k, 0, ek, τ)
5. return c

Helper(k,m, ek, τ)
1. if τ = ⊥ then
2. κ←$ PKE.Enc(ek, 0)
3. τ ← κ

4. else κ← τ

5. j ← 0
6. do
7. j ← j + 1

8. c← OSE.Enc(m)

9. (σ,w)← F(ek, c)
10. until κ[σ] = w or j = s

11. return (c, τ)

Figure 13: Games J0, J1, and J2 and adversaries B1 and B2 for proof of Theorem 4. In
the J-games, each game only include the boxed code if it has matching subscript. In B1
and B2, the boxes serve to highlight changes.

Let B1, defined in Figure 13, be an adversary to the IND-CPA game on PKE. Acting
as a challenger, B1 simulates the IND-CPA game on ASub2 for V, in particular using the
PKE.Enc oracle and public key given to it to simulate ASub2.Enc.

Let bpke denote the bit from the IND-CPAPKE(B1) game. Note that if bpke = 1,
then the Enc oracle simulated by B1 proceeds exactly as in game J1, and if bpke = 0,
then it proceeds exactly as in game J0. Thus we have Pr[B1 ⇒ 1 | bpke = 1] = Pr[J1],
Pr[B1 ⇒ 1 | bpke = 0] = Pr[J0], and hence |Pr[J1]− Pr[J0]| = 2AdvIND-CPA

PKE (B1).
Let B2, defined in Figure 13, be an adversary to the IND-CPA game on SE. Acting as

a challenger, B2 simulates the game J1 for V, in particular using the SE.Enc oracle given
to it to simulate ASub2.Enc1.

Game J2 is given in Figure 13. The only change from J1 is that the oracle will now
always use 0 in the place of m.

Let bse denote the bit from the IND-CPASE(B2) game. Note that if bse = 1, then the
Enc oracle simulated by B2 proceeds exactly as in game J2, and if bse = 0, then it proceeds
exactly as in game J1. Thus we have Pr[B1 ⇒ 1 | bse = 1] = Pr[J2], Pr[B1 ⇒ 1 | bse = 0] =
Pr[J1],, and hence |Pr[J2]− Pr[J1]| = 2AdvIND-CPA

SE (B2).
Finally, we note that in J2, there is no difference between the cases b = 0 and b = 1,

since m is never used. Hence Pr[J2] = 1
2 .
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Putting all these results together, we have

AdvIND-CPA
ASub2 (V) ≤ 2AdvIND-CPA

PKE (B1) + 2AdvIND-CPA
SE (B2),

as desired.

Assuming that PKE and SE are IND-CPA-secure, this result shows that ASub2 is
IND-CPA secure against an adversary V in possession of the embedded key ek.

5.3 Key recovery of our type 2 asymmetric ASA
As in Subsection 4.2, we will treat key recovery somewhat less formally than detectability,
and focus on the recovery probability in the case where there is sufficient randomness in
the encryption scheme SE.Enc and sufficient unpredictability in the function F to assume
that all the σ and w values generated are random.

The following method for key recovery is identical to that of [BJK15], with the extra
step of public-key decryption at the end:

1. Collect ciphertexts c1, ..., cn. Initialize κ to a string of length PKE.clen of null values.
2. For each ciphertext c, compute (σ,w) = F(ek, c). Set κ[σ] = w.
3. Compute k = PKE.Dec(xk, κ)

The probability of success here can be calculated by making use of a coupon-collector
problem analysis. 4 Suppose PKE is δ-correct. The probability that every ciphertext was
chosen to successfully leak a bit (F(ek, c) = κ[σ]) is (1− 2−s)n. Let ` be the length of κ.
Then the probability that a given index of κ was never selected is (1− 1/`)n (assuming
F is random). Hence the probability that at least one of the indices was never selected
is at most `(1 − 1/`)n, and the probability that the full κ can be recovered is at least
(1− 2−s)n · (1− `(1− 1/`)n). Considering any decryption failures in PKE, we have that
the probability of recovery of the key k is Pkr = δ · (1− 2−s)n · (1− `(1− 1/`)n).

This is sufficient for establishing key recovery in a theoretical setting. [BJK15] give
example values of s = 13, ` = 128, and n = 896, with key recovery probability close to
1/2. In our setting, we have PKE.clen ≈ 400, and hence we require more ciphertexts. With
n = 2900, s = 13, δ = 1, ` = 400, we get a key recovery probability above 1/2.

But this analysis does not account for other ways that key recovery could be performed.
In fact, it should be clear that even in the presence of erroneous encodings (i.e. some
ciphertext c is returned such that F(ek, c) 6= κ[σ]), the subverter may still be able to
recover the correct key if there are enough ciphertexts to encode each index several times.
To illustrate this better strategy, consider modifying the above strategy so that in step 2,
the subverter takes the most probable value of w for each ciphertext, based on the number
of times 0 or 1 was observed. This strategy will tolerate far more errors than our above
analysis, while still recovering the key. It may require many ciphertexts to ensure there
are large samples to draw from, but simultaneously it enables a smaller s value, since as n
grows, the error rate is primarily determined by s.

We evaluated this strategy with a simulation, assuming that the probability of correctly
encoding a key bit in a ciphertext is exactly 1− 2−s. In our case, the length of the value
to leak, κ, is around 400, and with s = 2 and n = 14000, this majority-voting strategy
enables key recovery in over 50% of cases.

This method of key recovery could be even further improved with the observation that
the subverter could brute-force a small number of key bits. Given that the incorrectly
decoded key bits are more likely to have fewer samples or closer tallies between correct

4https://en.wikipedia.org/wiki/Coupon_collector%27s_problem

https://en.wikipedia.org/wiki/Coupon_collector%27s_problem
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Figure 14: Key recovery parameter tradeoff, showing the smallest number of ciphertexts
n (rounded up to the nearest 100) that result in 50% and 5% probability of key recovery,
for κ of length 400, and the value of s on the x-axis.

and incorrect encodings, errors may be easy to identify. We will not include this possibility
in our analysis.

To further illustrate the tradeoff between n and s, we plotted our simulated results on
the graph in Figure 14. The graph shows the smallest n value (rounded up to the nearest
100) that results in 50% and 5% key recovery probability (with |κ| = 400) for each value
of s. We could use a smaller value of |κ| here, since we do not require PKE to be IND$
for our type 2 asymmetric ASA, but using |κ| = 400 certainly provides an upper bound.
The values given by the theoretical key recovery probability above are included in red
for comparison; values of s lower than 13 and 11 were not able to provide key recovery
probability above 50% and 5% respectively for any value of n. Of particular interest are
lower values of s: experimental results show it is possible to use values s = 6 or smaller,
while the theoretical probability would imply that these values of s are unusable.

The main difference between the simulation values and the theoretical approximation
comes from the requirement, in the theoretical case, that all attempts to encode key bits in
ciphertexts must succeed. With small s, (1− 2−s)n actually gets smaller as n gets larger
and dominates the key recovery estimation, whereas the key recovery probability should
increase when more samples are collected. Directly calculating the complicated probability
expression of key recovery without this assumption is precisely the difficulty that we are
avoiding with the simulation.

Earlier, we noted that one of the advantages of this ASA over the ASA in Section 4
was better resilience to timing detection. Recall that the parameter s determines the
maximum number of regular encryptions that the subverted encryption algorithm will do
to return one ciphertext. Effectively, the runtime of the subverted scheme is up to s times
the runtime of the unsubverted scheme. Knowing this, a large s would allow a user to
detect the ASA by timing the execution of the algorithm. We have shown that the ASA
ASub2 allows key recovery with s = 2, which is the smallest value we can achieve with this
acceptance-rejection framework.

While we haven’t included timing attacks in our formalism, it is an important area
of future work. Even with s = 2, a timing attack would easily detect ASub2. It is not
clear if there is any way to modify these techniques to achieve a general ASA which is
resistant to timing attacks. Indeed, a value of s = 1 would be identical to unsubverted
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encryption, and there is no obvious way to implement a non-integer value of s. Perhaps
an ASA based on acceptance-rejection techniques could have an expected value of s lower
than 2, and avoid detection by timing in this manner. Of the published ASAs we evaluated
in Section 3, [BSKC19] and [CHY20] avoided timing detection by using an efficient ASA,
where the execution time of the subverted algorithm is approximately the same as that
of the unsubverted algorithm, but at the cost of making detectable use of state under
state reset attacks. This therefore leaves a gap in the literature: are there ASAs which are
undetectable under state resets and timing attacks, using acceptance-rejection techniques
or otherwise?

5.3.1 Key recovery in the presence of state resets

As for our type 1 ASA from section Section 4, regular state resets would reduce key recovery
probability of the ASA in this section as it is currently written. However, in this case, it
is possible to modify the scheme to maintain key recovery in the presence of state resets.
Making PKE deterministic effectively removes dependence of the ASA on any state at all,
since the value of κ can be recomputed without state (keeping state anyway would allow
the ASA to do the work of recomputing κ only when the state is reset, mitigating some
of the inefficiency of this process). If the ASA does not require state, then key recovery
works just as well during state resets as without them.

If PKE was deterministic, this would also allow for the possibility of shorter PKE
ciphertexts. For example, Bellare, Boldyreva, and O’Neill provide a deterministic PKE
scheme which conserves plaintext length. If |κ| = |k| = 128, then key recovery would
require fewer ciphertexts. For example, the simulated 50% recovery values in Figure 14
would converge to 700 instead of 2600.

Unfortunately, deterministic PKE causes difficulties for our security analysis in Subsec-
tion 5.2. Theorem 4 bounds the IND-CPA′ advantage against ASub2 using the IND-CPA
security of PKE, which would no longer be appropriate for a deterministic PKE. To address
this, we would need to instead use security notions for deterministic PKE. Bellare et
al. provide security notions for deterministic PKE under the condition of high-entropy
plaintexts [BBO07], which applies to our case (k is the only plaintext encrypted, and is
high-entropy). An analogue to Theorem 4 would need to be proven with this new security
notion in order to prove that an ASA using deterministic PKE is a type 2 asymmetric
ASA.

6 Generalized Modifications to Obtain Asymmetric ASAs
In this section, we will explore how the techniques of Sections 4 and 5 generalize. So far,
we have only considered asymmetric ASAs on symmetric encryption. Our asymmetric
ASAs could be seen as modifications of existing symmetric ASAs. In this section, we will
show that these modifications could be done in a much more general manner, without
specifying either the cryptographic primitive or the underlying symmetric ASA.

Flexible ASAs. This generalization will apply only to a subclass of symmetric ASAs. A
reader might have noticed that the techniques of [BPR14] and [BJK15] could be used to
leak any value, and not just the key k. Indeed, it is this property of a symmetric ASA
that will allow for a transformation into an asymmetric one.

A flexible ASA fSub of a cryptographic scheme Λ is an ASA that satisfies these additional
constraints:

• fSub.Algλ takes an additional parameter µ ∈ M . We call M the space of leakable
values. We will assume that M consists of all bit strings.
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ASRDETfSub(U)
1. (xk, ek)←$ fSub.KeyGen()
2. i← 1
3. τ0 ← ⊥
4. b←$ {0, 1}

5. b
′←$ UOAlgλ

,Reset (ek)

6. return b = b
′

Reset(j), 0 ≤ j < i

1. if b = 1 then
2. τi ← τj
3. i← i+ 1

OAlgλ(x, µ)
1. if b = 0 then
2. y←$ Λ.Algλ(x)
3. if b = 1 then
4. (y, τi)←$ fSub.Algλ(x, ek, τi−1, µ)
5. i← i+ 1
6. return y

ASRDET$fSub(U)
1. (xk, ek)←$ fSub.KeyGen()
2. i← 1
3. τ0 ← ⊥
4. b←$ {0, 1}

5. b
′←$ UOAlgλ

,Reset(ek)
6. return b = b

′

Reset(j), 0 ≤ j < i

1. if b = 1 then
2. τi ← τj
3. i← i+ 1

OAlgλ(x, µ)
1. if b = 0 then
2. y←$ Λ.Algλ(x)
3. if b = 1 then
4. µ←$ {0, 1}
5. (y, τi)←$ fSub.Algλ(x, ek, τi−1, µ)
6. i← i+ 1
7. return y

Figure 15: The regular and augmented state reset detection games for flexible ASAs is on
the left, and the game ASRDET$ is on the right. The augmented game includes the code
in the box, while the regular one does not. The ASRDET$ game is a modification that
generates a random µ on each invocation of OAlgλ instead of using the supplied value.

• The subverter A must be able to recover µ from observation of outputs of fSub.Algλ(·,
ek, τ, µ) (analogous to the requirement of key recovery). This must be possible
efficiently, as a function of the length of µ

We define the regular and augmented state reset detectability games SRDETfSub(U)
and ASRDETfSub(U) for a flexible ASA fSub in Figure 15. These are modifications to the
games in Figure 2 to include µ. The adversary U supplies the value for µ when invoking
its oracle, allowing the leaked value to be related or unrelated to any secret information
intended to be used in the cryptographic scheme.

We also define a game ASRDET$, shown in Figure 15, which we will use in Theorem 5.
This game generates a random bit µ instead of using the value given to the oracle.

For our general treatment in this section, we will work with abstract security games.
Let Λ be a cryptographic scheme. Let SEC be a cryptographic game with adversary
A, which interacts with A by providing some oracles to A based on the algorithms of
Λ, and specifies a value φ ∈ [0, 1]. The advantage of A at the game SEC is defined as
AdvSEC

Λ (A) = |Pr[SEC(A)]− φ|. This generalization encompasses the security notion of
IND-CPA for symmetric encryption used in Section 5, as well as security notions such as
unforgeability on signature schemes and MAC tags, and others.

As in Section 5 with the IND-CPA game, we require a modification to the SEC game
when talking about subversions. Let SEC be a security game on a cryptographic primitive
Λ. Let fSub be an ASA on Λ. We will assume without loss of generality that all invocations
of the algorithm Λ.Algλ occur within oracles provided to the adversary A. Define SEC′ on
fSub to be the same as SEC but with the following modifications:

• A state τ (initialized to ⊥) and embedded key ek (generated with fSub.KeyGen) are
assigned at the beginning of the game, and ek is provided to the adversary A (i.e. A
is invoked with ek as a parameter and its output is ignored).

• For any oracle O provided to the adversary A which invokes Λ.Algλ, O is modified
to take µ as an additional parameter. Call these oracles µ-oracles.
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Γ1(fSub).Algλ(x, ek, τ, µ)
1. (ek′, k)← ek

2. if τ = ⊥ then
3. µ

′←$ PKE.Enc(ek′, µ)
4. σ ← 0
5. τ

′ ← ⊥
6. else
7. ((σ, µ), τ ′)← τ

8. if σ = PKE.clen then
9. σ ← 1

10. µ
′←$ PKE.Enc(ek′, µ)

11. else
12. σ ← σ + 1
13. (y, τ ′)←$ fSub.Algλ(x, k, τ ′, µ′[σ])
14. return (y, ((σ, µ′), τ ′))

Γ2(fSub).Algλ(x, ek, τ, µ)
1. (ek′, k)← ek

2. if τ = ⊥ then
3. µ

′←$ PKE.Enc(ek′, µ)
4. τ

′ ← ⊥
5. else
6. (µ′, τ ′)← τ

7. (y, τ ′)←$ fSub.Algλ(x, k, τ ′, µ′)
8. return (y, (µ′, τ ′))

Figure 16: Definitions of Γ1 and Γ2, our transformations on flexible symmetric ASAs to
obtain flexible asymmetric ASAs.

• Every instance of Λ.Algλ is replaced by fSub.Algλ, with the state variable τ being
assigned on output, where the input to Λ.Algλ is given as the first argument to
fSub.Algλ, and the required ek, µ, and τ are provided as inputs.

Essentially, we are modifying every instance of the line y←$ Λ.Algλ(x) to be of the form
(y, τ)←$ fSub.Algλ(x, ek, τ, µ). This SEC′ game will be used in Theorem 6.

We will also define another game as a further modification to SEC′. Let S be the
tuple of all variables assigned during the game SEC′, before the the first instance where
a µ-oracle is provided to A. Let S′ = S \ {τ, ek}. Let g be a function whose domain is
the set of all possible tuples S′, and whose output is a bit string. We say a function g of
this form is a selection function for the game SEC′. We define the game SECgfSub(A) is
the same as SEC′fSub(A) but where the µ-oracles no longer accept µ as a parameter, and
instead, each oracle has the line µ← g(S′) at the start of its execution. We will still refer
to these oracles as the µ-oracles.

SECgfSub is an appropriate game with which to evaluate the security of fSub. The
selection function g represents what value is targeted as being leaked by the ASA, and the
adversary A is tasked with breaking the security of fSub when this value is being leaked.
For a secure flexible ASA, we require that AdvSECg

fSub is small for all selection functions g.

6.1 ASA modifications
We now define our two modifications to flexible symmetric ASAs which result in flexible
asymmetric ASAs, one of type 1 and the other of type 2. Let Λ be a cryptographic scheme.
Let fSub be a flexible symmetric ASA on Λ, subverting the function Λ.Algλ. Let PKE be a
public-key encryption scheme. Define Γ1(fSub) and Γ2(fSub) as the flexible asymmetric
ASAs on Λ with Γ1(fSub).Algλ and Γ2(fSub).Algλ defined in Figure 16. The subversion-key
generation algorithms for both subversions are the same: the extraction key is the private
key generated by PKE.KeyGen and the embedded key is the concatenation of the public
key generated by PKE.KeyGen and the key generated by fSub.KeyGen.

These two modifications are exactly the techniques we used in Section 4 and Section 5
respectively, to build asymmetric ASAs on symmetric encryption, just written for a generic
scheme.

Recovery of µ. We will be treating the analysis of recovery of µ for Γ1 and Γ2 relatively
informally. If fSub is a flexible symmetric ASA, then a subverter A in possession of the key
k, upon observing outputs of the function fSub.Algλ(·, k, τ, µ), will be able to recover µ.
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DOPKE.Enc
1 (pk)
1. (xk, (ek′, k))←$ Γ1(fSub).KeyGen()
2. ek ← (pk, k)
3. i← 1
4. τ0 ← ⊥
5. bdet←$ {0, 1}

6. b
′
det←$ U

OAlgλ
,Reset

1 (ek)
7. if bdet = b

′
det

8. return 1
9. else

10. return 0

Reset(j), 0 ≤ j < i

1. if bdet = 1 then
2. τi ← τj
3. i← i+ 1

OAlgλ(x, µ)
1. if bdet = 0 then
2. y←$ Λ.Algλ(x)
3. if bdet = 1 then
4. (y, τi)←$ Helper(x, ek, τi−1, µ)
5. i← i+ 1
6. return y

Helper(x, ek, τ, µ)
1. (pk, k)← ek

2. if τ = ⊥ then

3. µ
′←$OPKE.Enc(µ)

4. σ ← 0
5. τ

′ ← ⊥
6. else ((σ, µ), τ ′)← τ

7. if σ = PKE.clen then
8. σ ← 1

9. µ
′←$OPKE.Enc(µ)

10. else σ ← σ + 1
11. (y, τ ′)←$ fSub.Algλ(x, k, τ ′, µ′)
12. return (y, ((σ, µ′), τ ′))

Figure 17: Adversary D1 for the proof of Theorem 5.

Then Γ2(fSub).Algλ enables the same for an adversary in possession of the extraction key
xk: the value that fSub is asked to leak will always be a chosen encryption µ′ of µ under
PKE, and since fSub enables recovery of µ′ in this context, A can recover µ using xk.

The case of Γ1 is a little bit more complicated. In this case, µ is encrypted to µ′,
each of whose bits is used exactly once before a new encryption is computed. Each bit is
leaked using fSub. In order to conclude that A is able to recover µ′, we require that fSub
is capable of leaking single bits with high probability after the observation of only one
output. Otherwise, a full value of µ′ would not be able to be recovered.

Proving Γ1(fSub) is a type 1 asymmetric ASA. We can now prove the main results of
this section. The first deals with the augmented undetectability of Γ1(fSub), showing that
it is a type 1 asymmetric ASA.

Theorem 5. Let Λ be a cryptographic scheme. Let fSub be a flexible symmetric ASA
on Λ. Let U1 be an adversary for the ASRDET game of Figure 15 on Γ1(fSub). Then
there is an adversary D1 such that AdvASRDET

Γ1(fSub) (U1) ≤ AdvASRDET$
fSub (U1) + 2AdvIND$

PKE (D1).
The running time of D1 is about that of U1 plus the running time of PKE.KeyGen and
fSub.KeyGen, and D1 makes the same number of queries to its own oracle as U1.

Proof. We will proceed by a sequence of games. This sequence will be similar to the first
part of the proof of Theorem 2. Let L0 be the augmented state reset detectability game
ASRDETΓ1(fSub)(U1). Let L1 be the same as L0 but with µ′ sampled randomly instead of
computed as an encryption of µ. Let L2 be the augmented state reset detectability game
ASRDET$fSub.

Let D1 be an adversary to the IND$ game for PKE that simulates games L0 and L1
for U1 by using its own OPKE.Enc oracle in place of PKE.Enc, given in Figure 17.

Let b$ denote the bit from the IND$PKE(D1) game. Note that if b$ = 1, then the oracle
simulated by D1 proceeds exactly as in game L1, and if b$ = 0, then it proceeds exactly
as in game L0. Thus we have Pr[D1 ⇒ 1 | b$ = 1] = Pr[L1], Pr[D1 ⇒ 1 | b$ = 0] = Pr[L0],
and hence |Pr[L1]− Pr[L0]| = 2AdvIND$

PKE (D1).
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From here, we note that, as in the proof of Theorem 2, the first lines (lines 1–10 in
adversary D1’s Helper) of the implementation of Γ1(fSub).Algλ in game L1 act as book-
keeping in order to use exactly one new random bit µ at a time in fSub.Algλ. Substituting
these lines for µ′←$ {0, 1} and moving this line to the first line of the oracle call gives us
precisely the game L2 = ASRDET$fSub(U1), and Pr[L1] = Pr[L2].

Taken together we get

AdvASRDET
Γ1(fSub) (U1) ≤ AdvASRDET$

fSub (U1) + 2AdvIND$
PKE (D1),

as desired.

Proving Γ2(fSub) is a type 2 asymmetric ASA. Next we deal with both the regular
undetectability and the security of Γ2(fSub), proving that Γ2(fSub) is a type 2 asymmetric
ASA. The security of Γ2(fSub) is evaluated using the game SECgΓ2(fSub), and an adversary’s
advantage at this game is bounded by using the game SEC′fSub. In this sense, we are
relating the security of Γ2(fSub) to the security of fSub in the situation where the adversary
must provide the value of µ, the “value to be leaked” by fSub. If an adversary must provide
the value to be leaked, then we would expect that there is nothing more to be learned for
the adversary, unless the scheme is leaking information in other ways. Thus, intuitively,
what we require is that fSub is not leaking any additional information; this is codified in
the game SEC′fSub. This provides the intuition for our security result, and the formalization
of what is required from fSub to ensure that Γ2(fSub) is secure.

Theorem 6. Let Λ be a cryptographic scheme. Let fSub be a flexible symmetric ASA on Λ.
Let SEC be a security game on Λ. Let g be a selection function for the game SEC′. Let U1 be
an adversary for the SRDET game on Γ2(fSub) and V1 be an adversary for the SECg game
on Γ2(fSub). Then there is an adversary U2 such that AdvSRDET

Γ2(fSub)(U1) = AdvSRDET
fSub (U2),

and adversaries D2 and V2 such that AdvSECg
Γ2(fSub)(V1) ≤ AdvSEC′

fSub (V2) + 2AdvIND-CPA
PKE (D2).

The running time of U2 is about that of U1 and U2 makes the same number of queries to
its own oracle as U1. The running time of D2 is about that of V1, and D2 makes the same
number of queries to its own oracle as V1. If the number of oracle queries that V1 makes is
n, then the running time of V2 is about that of V1, plus the running time of PKE.KeyGen,
plus the running time of PKE.Enc times n. For each oracle in the game SEC, V2 makes
the same number of queries to its corresponding oracle as V1 does.

Proof. For the undetectability result, we will construct the adversary U2 directly; the con-
struction is given in Figure 18. We claim that U2 exactly simulates the game SRDETΓ2(fSub)
for U1.

To see this, observe that for any query to OΓ2(fSub).Algλ that U1 makes, the value
of µ′ passed to OfSub.Algλ is an encryption of µ under PKE. Furthermore, the same
encrypted µ′ is reused in all invocations of fSub.Algλ unless τi−1 = ⊥, in which case
it is recomputed. This is exactly the behaviour of the SRDETΓ2(fSub) game. Hence
Pr
[
SRDETΓ2(fSub)(U1)

]
= Pr[SRDETfSub(U2)], giving our result.

For the security inequality, we will proceed by a sequence of games. Let K0 be the
game SECgΓ2(fSub)(V1). Let K1 be the game SEC0

Γ2(fSub)(V1), where the 0 in the superscript
represents the function that outputs 0 on all inputs. Let K2 be the game SEC′fSub(V2).

Let D2 be an adversary to the IND-CPA game for PKE that simulates games K0 and
K1 for V1 by using its own OPKE.Enc oracle in place of PKE.Enc. This is shown in Figure 18.

Let bPKE denote the bit from the IND-CPAPKE(D2) game. Note that if bPKE = 1, then
the oracle simulated by D2 proceeds exactly as in game K1, since in K1 the only value of
µ passed to the Helper function is 0. If bPKE = 0, then D2 proceeds exactly as in game
K0. Thus we have Pr[D2 ⇒ 1 | bPKE = 1] = Pr[K1], Pr[D2 ⇒ 1 | bPKE = 0] = Pr[K0], and
hence |Pr[K1]− Pr[K0]| = 2AdvIND-CPA

PKE (D2).
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UOfSub.Algλ ,Reset2
2

1. (xk, ek′)←$ PKE.KeyGen()
2. i← 1
3. τ0 ← ⊥

4. b←$ U
OΓ2(fSub).Algλ

,Reset1
1

5. return b

Reset1(j), 0 ≤ j < i

1. τi ← τj
2. i← i+ 1
3. Reset2(j)

OΓ2(fSub).Algλ(x, µ)
1. if τi−1 = ⊥ then
2. µ

′←$ PKE.Enc(ek′, µ)
3. else
4. µ

′ ← τi−1

5. τi ← µ
′

6. y←$OfSub.Algλ (x, µ′)
7. i← i+ 1
8. return y

DOPKE.Enc
2 (pk)

1. SECg with the first part of
2. ek = (ek′, k), which is generated
3. by Γ2(fSub).KeyGen, replaced by
4. pk, and Γ2(fSub).Algλ
5. replaced by Helper.

Helper(x, ek, τ, µ)
1. (pk, k)← ek

2. if τ = ⊥ then

3. µ
′←$OPKE.Enc(µ)

4. τ
′ ← ⊥

5. else
6. (µ′, τ ′)← τ

7. (y, τ ′)←$ fSub.Algλ(x, k, τ ′, µ′)
8. return (y, (µ′, τ ′))

V2(k)
1. (xk, ek′)←$ PKE.KeyGen()
2. ek ← (ek′, k)
3. τ ← ⊥
4. V1(ek)

VO
′
j ,j∈J⊆{1,...,t}

2 (x)
1. y←$ V

Oj ,j∈J⊆{1,...,t}
1 (x)

2. return y

Oj(x), 1 ≤ j ≤ t1
1. if τ = ⊥ then
2. µ

′←$ PKE.Enc(ek′, 0)
3. else µ′ ← τ

4. τ ← µ
′

5. y←$O′j(x, µ
′)

6. return y

Oj(x), t1 ≤ j ≤ t
1. y←$O′j(x)
2. return y

Figure 18: Adversaries U2,D2, and V2 for the proof of Theorem 6. For U2 and V2, queries
made by U1 and V1 to their oracles are answered by using the oracles provided to them as
indicated. D2 runs the indicated code to simulate the SECg game, and any oracle query
that would use Γ2(fSub).Algλ(x, ek, τ, µ) is answered using the code in Helper.

Next, we will construct the adversary V2 in the game SEC′fSub directly. Suppose that
the game SEC provides oracles Oj for 1 ≤ j ≤ t, each with inputs labeled x and outputs
labeled y as tuples. After being modified for game SEC′, assume that oracles O1, ...Ot1 for
some 1 ≤ t1 ≤ t are µ-oracles, and the rest are not. The adversary V2 is given in Figure 18.

We claim that V2 exactly simulates the game SEC0
Γ2(fSub) for V1. The argument

and construction are very similar to the symmetric detectability result. Observe that
for any query to any oracle accepting a parameter µ that V1 makes, the value of µ′
passed to V2’s oracle O′j is an encryption of 0 under PKE. Furthermore, the same
µ′ is reused in all future oracle invocations. All oracles not accepting a parameter
µ are provided directly to V1. This exactly simulates the SEC0

Γ2(fSub) game. Hence
Pr[K1] = Pr

[
SEC0

Γ2(fSub)(V1)
]

= Pr
[
SEC′fSub(V2)

]
= Pr[K2].

Combining these results, we get

AdvSECg
Γ2(fSub)(V1) ≤ AdvSEC′

fSub (V2) + 2AdvIND-CPA
PKE (D2),

as desired.

For the symmetric subversions on symmetric encryption from [BPR14] and [BJK15],
we can show that the quantities AdvSEC′

fSub and AdvASRDET$
fSub are small for any adversary; the

proofs in Section 4 and Section 5 did essentially that. Proving these advantages are small
for a given flexible ASA fSub would allow one to draw conclusions about the undetectability
and security of Γ1(fSub) and Γ2(fSub) using the theorems in this section.

7 Discussion and Future Work
In this work, we formalized the approach of using state resets to detect ASA, and showed
how asymmetric ASAs can be constructed from symmetric ASAs. A key observation of
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our work is that many published ASAs are detectable via realistic state reset attacks (such
as virtual machine snapshotting) despite having small state. As such, we encourage future
threat models to incorporate this notion of state resets when evaluating the detectability
of new ASAs.

We identify several topics that warrant further exploration.

Our type 1 and type 2 asymmetric ASAs have running times that are multiple times
longer than the algorithms they subvert. This would make them detectable by a user or
other adversary who is able to time execution of the algorithm. Furthermore, all of the
published ASAs which are more efficient (in the sense of running times closer to those of
the underlying algorithm) are, to our knowledge, detectable in the presence of state resets.
An interesting direction for future work is modeling detection of ASAs based on running
time and developing ASAs that resist both time-based detection and state reset-based
detection, or proving that an ASA satisfying both is impossible. Timing attacks are but
one way to model increased detection capabilities on the part of the user; other capabilities
and their effects on known ASAs are also of interest.

Further improvements to our ASAs are possible. Our type 1 asymmetric ASA mod-
ification is dependent on the ability of the underlying ASA to leak single bits reliably,
and this requirement could potentially be removed. Perhaps modifications could also be
made on “non-flexible” ASAs. Methods to enable key recovery with fewer ciphertexts
likely exist, and would be more effective in certain contexts. For example, suppose a user
is changing their symmetric key too often for the ASAs in this paper to effectively leak
the key, say every 300 messages (leaking a PKE-encrypted value would require at least
400 ciphertexts). Consider an ASA on symmetric encryption that leaks values in 2 stages:
first, it leaks a longer encryption of a locally generated shorter key, resulting in a secret
key shared with the external subverter. Next, it uses this new key to undetectably leak the
targeted secret key directly, requiring interception of fewer ciphertexts. This ASA could
be formulated as a generic modification to an underlying symmetric ASA, as we did in
Section 6. Such an ASA could be a type 1 or type 2 asymmetric ASA depending on the
exact implementation of the leaks, and, after the initial shared key is established, would
recover keys more quickly than the ASAs we presented in this paper.

Further to the above, it is an open question whether a stateless type 1 asymmetric
ASA exists. While we have argued that state does not lead immediately to detection, the
effectiveness of a stateful ASA can be mitigated by using state resets. In fact, any ASA that
requires state for key recovery can be fully countered by a state reset after every invocation
of the subverted algorithm (as mentioned before, this may have significant impacts on
performance). We see no straightforward way of modifying our type 1 asymmetric ASA
to make it stateless. We encourage work on discovery of a stateless type 1 ASA or on an
impossibility result.

We have not addressed the topic of countermeasures to ASAs significantly in this
work. Several different avenues exist in the literature: deterministic algorithms [BPR14,
DFP15, BJK15]; reverse firewalls using re-randomization [AMV15]; immunization methods
[AFMV19], including a split-program methodology for preventing ASAs [RTYZ17, RTYZ16,
TY17]; and so-called self-guarding cryptographic schemes [FM18]. All of these solutions
assume some extra trusted component (for example, a trusted firewall system, a period of
time where the scheme is not subverted, or an unsubvertable algorithm composition step).
Each solution is able to produce significant guarantees on the scheme’s resistance to ASAs.
These countermeasures work against our ASAs as well, but we nonetheless encourage more
work on methods to prevent ASAs which are simple and easy to implement in practice.
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