
IACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 2021, No. 3, pp. 170–217. DOI:10.46586/tosc.v2021.i3.170-217

PLCrypto: A Symmetric Cryptographic Library
for Programmable Logic Controllers

Zheng Yang1, Zhiting Bao2, Chenglu Jin3, Zhe Liu4∗ and Jianying Zhou5

1 Southwest University, Chongqing, China youngzheng@swu.edu.cn
2 Chongqing Institute of Engineering, Chongqing, China bztbaozhiting@gmail.com

3 Centrum Wiskunde & Informatica, Amsterdam, The Netherlands chenglu.jin@cwi.nl
4 Nanjing University of Aeronautics and Astronautics, Nanjing, China zhe.liu@nuaa.edu.cn

5 Singapore University of Technology and Design, Singapore, Singapore
jianying_zhou@sutd.edu.sg

Abstract. Programmable Logic Controllers (PLCs) are control devices widely used in
industrial automation. They can be found in critical infrastructures like power grids,
water systems, nuclear plants, manufacturing systems, etc. This paper introduces
PLCrypto, a software cryptographic library that implements lightweight symmetric
cryptographic algorithms for PLCs using a standard PLC programming language
called structured text (ST). To the best of our knowledge, PLCrypto is the first
ST-based cryptographic library that is executable on commercial off-the-shelf PLCs.
PLCrypto includes a wide range of commonly used algorithms, totaling ten algorithms,
including one-way functions, message authentication codes, hash functions, block
ciphers, and pseudo-random functions/generators. PLCrypto can be used to protect
the confidentiality and integrity of data on PLCs without additional hardware or
firmware modification. This paper also presents general optimization methodolo-
gies and techniques used in PLCrypto for implementing primitive operations like
bit-shifting/rotation, substitution, and permutation. The optimization tricks we
distilled from our practice can also guide future implementation of other computation-
heavy programs on PLCs. To demonstrate a use case of PLCrypto in practice, we
further realize a cryptographic protocol called proof of aliveness as a case study. We
benchmarked the algorithms and protocols in PLCrypto on a commercial PLC, Allen
Bradley ControlLogix 5571, which is widely used in the real world. Also, we make
our source codes publicly available, so plant operators can freely deploy our library
in practice.
Keywords: Programmable Logic Controllers · Industrial Automation · Symmetric
Cryptography · Cryptographic Library

1 Introduction
It is indisputable that the Industrial Internet of Things (IIoT) adoption in industrial
control systems or critical infrastructures has excellent potential in the future. The concept
of IIoT allows all components in such systems to be connected and coordinated intelligently
and efficiently. Research conducted by Morgan Stanley and Automation World Magazine
in 2015 predicted that the global market of IIoT would grow to 123 billion USD in
2021 [Sta16]. However, according to the same report, the manufacturers expressed their
concerns about cybersecurity and their legacy-installed base [Sta16]. This reality imposes
a vital question for us: how to secure legacy industrial systems? In this paper, we will
∗Corresponding Author

Licensed under Creative Commons License CC-BY 4.0.
Received: 2021-06-01 Accepted: 2021-08-01 Published: 2021-09-17

https://doi.org/10.46586/tosc.v2021.i3.170-217
mailto:youngzheng@swu.edu.cn
mailto:bztbaozhiting@gmail.com
mailto:chenglu.jin@cwi.nl
mailto:zhe.liu@nuaa.edu.cn
mailto:jianying_zhou@sutd.edu.sg
http://creativecommons.org/licenses/by/4.0/

Zheng Yang, Zhiting Bao, Chenglu Jin, Zhe Liu and Jianying Zhou 171

show our solution as a significant step towards solving this problem. In particular, we will
show how to retrofit legacy programmable logic controllers (PLCs) to secure
their communications against network attackers without additional hardware
or new firmware.

The cores of industrial control systems are PLCs that control the physical processes
directly. Thus, PLCs are usually the primary targets for attackers to compromise. How-
ever, widely used commercial PLCs lack proper security protections, like encryption and
authentication. For example, suppose attackers are somehow connected to the operational
technology network. In that case, they can easily intercept and manipulate the commu-
nication (e.g., over Common Industrial Protocol (CIP)) between PLCs and supervisory
control and data acquisition (SCADA) servers.

To formalize the security needs in the automation industry, ODVA drafted in 2015
the first version of a security specification, CIP Security [ODV19], for the communication
of design automation devices, including PLCs. In the specification, ODVA highlighted
the need for device authentication, data integrity, and data confidentiality. Following this
specification, PLC vendors have started designing and producing new CIP Security capable
devices. However, the reality is that there are still a huge number of legacy devices running
in the field, and the average lifetime of devices in factories is around 20 years [Dec18].
This also means that it will take at least another 20 years for the manufacturers to fully
adapt to today’s technology. Even today, CIP Security capable PLCs are not mainstream
products from leading PLC vendors. For example, in a document published in September
2019 by Rockwell Automation, one leading PLC vendor, they only have one PLC model,
ControLogix 5580, that supports CIP Security [Bra19].

Our Solution. To support legacy PLCs in the real world with no extra cost, we propose
to secure PLC communications by developing a comprehensive symmetric cryptographic
library, PLCrypto, on the control logic layer. Note that the control logic program is running
on top of the firmware of a PLC. It is the only layer that one PLC user (e.g., an operator
of an industrial control system) can program to realize various control and computation
functionalities.

We develop our cryptographic library on Allen Bradley PLCs from Rockwell Automa-
tion [Roc20] because it is one of the two leading PLC vendors (SIEMENS and Rockwell
Automation) in the world, each of which has more than 20% market share in the global
market of PLCs as of 2017 [Deu17]. Although the implementations we developed are
specific for Allen Bradley PLCs, our library can be easily migrated to the PLCs from other
vendors. It is because PLCrypto is developed in structured text (ST), which is one of the
standard programming languages for PLCs defined in IEC-61131-3 [JT13].

Realizing cryptographic algorithms on PLCs is challenging. The main difficulties we
encountered are:

1. To program PLCs, we have to use a particular set of programming languages defined
in IEC-61131-3 [JT13], i.e., ladder diagram, function block diagram, structured text,
sequential function chart, and instruction list (deprecated). We selected structured
text for developing our library because other PLC programming languages are
graphical programming languages and are not suitable for implementing complex
arithmetic operations.

2. The programming model of structured text is very restricted, especially on Allen
Bradley PLCs [Bra18a], e.g., it does not support pointers, bit-wise shifting/rotation
operations. Therefore we have to use more expensive alternative methods to imple-
ment these operations in cryptographic algorithms.

3. PLCs are not ideal devices to store secrets because everyone connected to the PLCs
over the network can read/write all the variables (or tags in PLC terminology) in

172PLCrypto: A Symmetric Cryptographic Library for Programmable Logic Controllers

the PLCs. The attacker may exploit this feature of PLC to implement a family of
attacks, which we jointly call tag manipulation attacks.

4. PLCs are primarily used to control physical processes, so they are not optimized for
complex logical or arithmetic operations in cryptographic algorithms. During the
process of implementing PLCrypto, we discovered a variety of optimization tricks.
For example, we notice that we can easily access individual bits in variables on PLCs.
Based on this observation, we introduced one trick called hard-coding to significantly
improve the performance of certain cryptographic algorithms. For example, our
hard-coding implementation of a one-way function (OWF) is 2× faster than the
straightforward implementation.

PLCrypto includes cryptographic algorithms providing the security properties that are
highly demanded in real-world applications, such as confidentiality, integrity, collision-
resistance, and pseudo-randomness. Most of the included algorithms are either stan-
dardized by ISO/IEC or the state-of-the-art symmetric cryptographic algorithms that
fit the PLC environment. PLCrypto encompasses Message Authentication Code (MAC)
algorithm Chaskey [MMH+14], block ciphers PRESENT [BKL+07, PRE19], SPECK, and
SIMON [BSS+13], and collision-resistant hash functions PHOTON [GPP11, JG16] and
SPONGENT [BKL+13]. PLCrypto also contains some subset-sum based cryptographic
primitives as efficient alternatives, like one-way functions (OWF) and universal one-way
hash functions (UOWHF). In the meantime, we realize some basic operations (such as big
integer addition and subtraction) to support our implementation of block ciphers. Note
that the resilience to potential sophisticated side-channel attacks is not considered in this
paper, and it is one of the future works.

To demonstrate how one can extend the application of PLCrypto beyond communication
security, we use PLCrypto to implement a proof of aliveness (PoA) protocol [JYvDZ19]
on an Allen Bradley PLC. The protocol was designed to prove the aliveness of devices in
critical infrastructures to a remote server. To the best of our knowledge, this is the first
implementation of proof of aliveness protocol on a commercial off-the-shelf PLC, and the
authors of [JYvDZ19] only implemented their protocol on a much more powerful device,
Raspberry Pi, in C as a prototype. Our new evaluation results of PoA demonstrate its
practicality on commercial PLCs.

By making this library publicly available, we believe the research community can benefit
from it for future research. Open-source codes also greatly facilitate the deployment of
cryptographic algorithms on legacy PLCs by the plant operators, who typically have no
background in cryptography or cryptographic engineering.

Contributions. In this paper, we made the following significant contributions:

1. To the best of our knowledge, PLCrypto is the first cryptographic library implemented
for PLCs using the languages defined in IEC-61131-3. This allows cryptography to
be easily integrated into industrial systems to protect communications without the
need for additional hardware or firmware modification.

2. PLCrypto is a comprehensive symmetric cryptographic library, covering a variety of
symmetric cryptographic algorithms as shown in Figure 1. Our library is the first
one that can resist tag manipulation attacks.

3. We present a case study of potential applications of PLCrypto by realizing a proof
of aliveness protocol.

4. We evaluate the performance of PLCrypto on Allen Bradley PLCs made by Rockwell
Automation, which is the second-largest PLC vendor in the world. We also intro-
duce many implementation tricks to optimize the performance of the algorithms in
PLCrypto significantly.

Zheng Yang, Zhiting Bao, Chenglu Jin, Zhe Liu and Jianying Zhou 173

Figure 1: Overview of PLCrypto Library.

5. We make our library publicly available online to facilitate both future research and
real-world deployment.

Organization. Related works and necessary background are introduced in Section 2
and 3. Section 4 describes the threat model, and Section 5 presents an overview of our
techniques for realizing the secure and optimized implementation of PLCrypto on PLCs.
The implementations, use case study, and benchmark results are presented in Section 6, 7,
and 8, respectively. Finally, we conclude the paper and point out possible future works in
Section 9. The source codes and user manual of PLCrypto can be freely downloaded at
https://github.com/PLCrypto/PLCrypto.

2 Related Work
Industry and academia have made various proposals to use cryptography to secure PLC
communications. However, in contrast to PLCrypto, none can be realized on commercial
PLCs without any additional cost. We generally categorize the related works into two
categories.1 One requires additional hardware to be attached to PLCs to retrofit legacy
PLCs. The other kind of work relies on a hypothetical scenario, where the firmware of
PLCs can be programmed by PLC users or plant operators. However, this is usually not
the case in reality. The firmware of mainstream commercial PLCs is not open-sourced.
Also, to change the firmware of a commercial PLC, one will need to sign new firmware
using a private key only known by the PLC vendor. Therefore, we argue that it is either too
costly (additional hardware) or infeasible (firmware modification) for plants to secure their
legacy PLCs. This naturally leads to the solution presented in this paper: a cryptographic
library running on the control logic layer, which is one layer above the firmware.

Additional Devices. Allen Bradley introduced an additional CIP Security capable
communication module, which can be attached to an Allen Bradley PLC [Bra19]. However,
this will be a costly solution as every PLC in the plants will need to install a new
communication module. American gas association (AGA) has made one proposal in AGA
report 12 to recommend using cryptographic algorithms to protect the communication
between field devices and the centralized control server called supervisory control and
data acquisition system (SCADA) [Ass06]. In the report, the authors recommended

1We are aware of one work which implemented block ciphers, SIMON and SPECK, on commercial
PLCs [DG17], but the PLC they used is extremely powerful and runs Windows CE. Also, their PLCs
are from a vendor that is not among the top eight PLC vendors who take more than 90% market share
in total globally according to [Deu17]. Moreover, the authors did not open-source their codes, and the
language used in their implementation is not specified, so we cannot compare PLCrypto with theirs.

https://github.com/PLCrypto/PLCrypto

174PLCrypto: A Symmetric Cryptographic Library for Programmable Logic Controllers

attaching another device called SCADA Cryptographic Module (SCM) to both parties
of communication. Hence, the SCM becomes a proxy that can encrypt the message
sent from the source and decrypt the message at the destination. A similar idea is also
realized in [CATO17], where the authors proposed to reduce the computational overhead
of the cryptographic methods by selectively encrypting security-critical messages, e.g.,
reading/writing requests. The proposed framework is implemented using a Raspberry
Pi to tap the communication. Although this solution can be realized in a system with
commercial PLCs, it is still not scalable as it requires new devices as a proxy for every
PLC. Besides encryption and signature, authenticated key exchange protocols were also
proposed for the applications on PLCs in critical infrastructures [JYAZ19]. It exploits the
historical data stored on the SCADA server as additional authentication factors. To make
this authenticated key exchange protocol compatible with legacy PLCs, one additional
proxy has to be added.

Firmware Modification. Some researchers took a different approach to introduce
cryptography into PLC systems. They tried to propose methods that are integrated into
the firmware of PLCs. However, typically only the PLC vendors have the source codes
of PLC firmware, and only the vendors can modify it. Alves et al. proposed to add a
cryptographic layer in the network layer of PLCs, so they used AES-256 in cipher block
chaining mode to protect both the confidentiality and integrity of messages [AMY17].
As a follow-up research, Alves et al. augmented the cryptographic layer in [AMY17]
with machine learning-based intrusion detection in the framework of OpenPLC [ADM18].
Cryptographic encryption and integrity check are also embedded in Snapshotter design
in [JVvD18]. Snapshotter system is a secure logging system of PLCs, which logs all
security-related events on PLCs and then encrypts the messages using AES. All the
above proposals require modifying the firmware of PLCs for tighter integration, so the
performance evaluations in [AMY17, ADM18, JVvD18] are conducted in an open-source
PLC framework called OpenPLC [Alv20] running on Raspberry Pi 3, instead of commercial
PLCs.

Optimizations in Cryptographic Engineering. Another area of related works to
this paper is the cryptographic engineering optimization tricks introduced by researchers
working on different embedded device platforms. Hard coding and pre-computation are
widely adopted techniques in accelerating computation. For example, they can be seen
in cryptographic libraries like OpenSSL [YH20] and MIRACL [Mir18]. The OpenSSL
implementation (as well as in the optimized code of Rijndael cipher [RBB00]) involves
several hard-coded lookup tables of AES, which can significantly save time for AES round
computation. Another optimization technique related to our work is the Bitslicing which
breaks down the implementation of a symmetric cipher into logical bit operations that
then can be computed in parallel. Such kind of optimization fits well on platforms with
good parallel processing capabilities (e.g., GPU) [NAI17]. However, these traditional
optimization techniques might not be effective on all platforms. In [SHB09], Stark et
al. showed that the Bitslicing technique [RSD06] is quite inefficient in Javascript. This
fact motivates Stark et al. to specifically develop a symmetric cryptographic library
in Javascript. In this Javascript crypto library, they introduced several optimization
techniques (including hard-coding strategies) tailored to couple the specific characteristics
of Javascript interpreters. We stress that the traditional hard-coding and Bitslicing
optimization techniques cannot be straightforwardly applied to implement cryptographic
algorithms on PLC as well. That is, we face many unique challenges and difficulties
in realizing PLCrypto as mentioned in Section 1, e.g., the restriction imposed by the
programming language and the physical constraints of the resource-constrained devices.
Beyond those difficulties, we also need to prevent tag manipulation attacks (detailed in
Section 4), which are unique on PLCs.

Zheng Yang, Zhiting Bao, Chenglu Jin, Zhe Liu and Jianying Zhou 175

3 Preliminaries
In this section, we introduce various notations and cryptographic primitives used in this
paper.

General Notations. We denote the security parameter by κ, an empty string by ∅,
and the set of integers between 0 and n − 1 by [n] = {0, . . . , n − 1}. If X is a set, then
x

$← X denotes the action of sampling a uniformly random element from X. If X is a
probabilistic algorithm, then x $← X denotes that X runs with fresh random coins and
returns x. We denote the binary representation of a value X with bit size ln as a vector
x = 〈x[0], x[1], . . . , x[ln − 1]〉 ∈ {0, 1}ln , i.e., x can be represented as a bit array. We let
| · | be an operation to calculate the bit-length of a value. We let || be an operation of
concatenating two strings. We let 0n denote a bit string consisting of n zeros.

In Table 1, we summarize some important notations used in this paper.

Table 1: Some important notations
Notation Description

κ Security parameter
[n] The set of integers between 0 and n− 1 ⊂ N

$← Action of sampling a uniformly random element
| · | Bit-length of a value

≪, ≫ Rotate left and right
�, � Left and right shift
|| Concatenation of two bit strings

0n A string consisting of n zeros

3.1 Background of PLC Programming

PLC Basics. Programmable logic controllers (PLCs) are a class of embedded devices
designed specifically for controlling industrial devices (such as sensors and actuators) in
industrial control systems. On a PLC, the control program is running periodically. In
each period, the PLC takes inputs, executes its control program based on the inputs (from
sensors), and generates outputs (to steer actuators). The period is typically called a scan
cycle. All variables are called tags in PLC programming, so we use “tags” and “variables”
interchangeably hereinafter. In addition, PLCs are usually connected with the supervisory
control and data acquisition (SCADA) system in an industrial control system. SCADA
system is responsible for collecting the operational data provided by all PLCs in the system
and coordinate their control behavior to achieve the best performance.

Structured Text (ST). ST is a programming language defined by PLCOpen in IEC
61131-3 [JT13] that is tailored for PLC programming. Here, we review the ST used by
Allen-Bradley (AB) PLCs [Bra18b] based on which our PLCrypto is realized. Note that
Allen-Bradley only supports a simplified version of ST that abandons some useful data
types and functionalities for cryptographic engineering. For example, unsigned integer
and user-defined functions are not supported. Hence, our implementation becomes more
challenging and valuable. Implementing PLCrypto on such a restricted platform also
implies its portability on other platforms with full-fledged ST.

The syntax of ST is developed to look like that of a high-level programming language
(such as Pascal or C) with loops, variables, conditions, and operators. We list the main
data types and operators used by PLCrypto in Table 2. Moreover, PLC adopts twoâĂŹs
complement to represent an integer. We use A[·] to denote an 1-dimensional array and
A[·, ·] to denote an 2-dimensional array. We summarize the pros and cons of using ST to
program as follows.

176PLCrypto: A Symmetric Cryptographic Library for Programmable Logic Controllers

Table 2: Main data types and operators in ST
Data type Description

SINT Short integer, −128, . . . ,+127

DINT Double integer,
−231, . . . ,+231 − 1

REAL Real number, ±10±38

BOOL Bit in {0, 1}

Operators Description
MOD Modulo-divide

AND, OR,
XOR Logical AND, OR, and XOR

+,-,*,/ Add, Substract, Multiply, Divide
** Exponent (x to the power of y)

Benefits. An advantage of ST compared to other high-level programming languages is that
it allows direct access to every bit of a SINT or DINT type variable. This feature can be a
great boost of performance for cryptographic algorithms on PLCs, i.e., one can append
“.[·]” to a SINT or DINT variable to read a bit of the variable. For example, given a DINT
variable t, we can get the 6-th bit of t by using t.[5] or t.5.

Drawbacks. ST does not have pointer like data type (as in C language), and it does
not support dynamic memory management. Therefore, sending parameters between two
routines (functions) might be costly, particularly concerning large-sized data (e.g., hash
messages). Also, ST does not have bit-wise shift/rotate instructions, which are primitive
functions used in many cryptographic algorithms (e.g., block ciphers). These drawbacks of
ST impede the performance of the cryptographic algorithms running on PLC.

3.2 Subset-sum Problem
Let A = {a0, a1, . . . , aln−1} be a set of ln numbers, where ln ∈ N and each ai (for
i ∈ [ln]) is an ln-bit integer. The subset-sum problem is one of Karp’s NP-complete
problems [IN96, DRX17, CG20] which can be viewed as inverting the following function:

Fsss(x,A) =
i=ln−1∑
i=0

x[i]ai (mod 2ln). (1)

where x ∈ {0, 1}ln , and A is a fixed parameter of Fsss. In PLCrypto, we choose the modular
addition under the field F2ln for efficiency. Given a target value t ∈ {0, 1}ln , inverting Fsss
is to find an appropriate x such that Fsss(x,A) = t.

As shown in [IN96], many cryptographic primitives, such as one-way function (OWF),
and universal one-way hash function (UOWHF), can be built from the subset-sum problem.
Namely, the function Fsss(x,A) directly implies the construction of OWF. UOWHFs [NY89]
is also known as target collision-resistant hash function such that it is hard to find a
collision where one pre-image is chosen independently of the hash function parameters.
UOWHF can be realized with Fsss(x,A) by appropriately truncating some bits from its
output for compression purposes. We denote such a UOWHF by Hsss, which takes as
input a message m ∈ {0, 1}lm and outputs a hash value t ∈ {0, 1}lh . Moreover, Steinfeld et
al. [SPW06] pointed out that higher-order UOWHF can also be constructed from subset-
sum assumption, so it is feasible to build a UOWHF function with variable input-length
lm ≥ ln using Fsss(x,A) as a compression function. UOWHF has many cryptographic
applications, e.g., it is widely used for hashing long messages before signing with a digital
signature scheme.

3.3 Algorithms in PLCrypto
In PLCrypto, we include cryptographic algorithms providing the security properties
that are mostly desired in real-world applications, such as confidentiality, integrity,
collision-resistance, and pseudo-randomness. Most of the included algorithms are ei-
ther standardized by ISO/IEC or the state-of-the-art symmetric cryptographic algo-
rithms that fit the PLC environment. Besides subset-sum problem based OWF and

Zheng Yang, Zhiting Bao, Chenglu Jin, Zhe Liu and Jianying Zhou 177

UOWHF, PLCrypto encompasses the MAC algorithm Chaskey [MMH+14], block ciphers
PRESENT [BKL+07, PRE19], SPECK and SIMON [BSS+13], and collision-resistant
hash functions PHOTON [GPP11, JG16] and SPONGENT [BKL+13]. We also include a
cryptographic protocol called Proof of Aliveness (PoA) [JYvDZ19], which serves as an
application example to show how to use the cryptographic algorithms in PLCrypto. As our
implementation may require big-integer operations, we also realize some basic operations
(such as addition, subtraction, multiplication, and division) to show their performance on
PLCs. More details of these algorithms are reviewed in Appendix A.

4 Threat Model
In this section, we describe the threats against PLCs. Generally speaking, most commodity
PLC platforms offer little security protection for remote access, which enables attackers to
exploit systematic vulnerabilities. In the following, we discuss the attacker capability and
the settings of PLCs.

Figure 2: System Model of Industrial Control Systems. PLCs sit between the physical
processes and supervisory level. Remote attackers are assumed to be able to get access to
the operational technology network.

Attackers. To better illustrate the threats against PLCs, we present the high-level system
model and threat model in Figure 2. PLCs are connected via wired/wireless industrial
local area network to computers (e.g., SCADA in the monitor center, or even another PLC
in the network). The PLCs can exchange system operation data and control messages
with the SCADA and other connected PLCs. However, since the network module of many
commercial PLCs do not support any security features, the network communication to
PLCs is usually unprotected and open to attackers once they get access to one of the
devices or access points in the network.

In this work, we mainly consider network attackers against PLCs, who can take control
of the communication of a plant where the target PLCs are installed. The goal of the
network attackers is to manipulate the executable code or data stored in the PLC and try
to steal the secrets stored in the PLC (e.g., the system status and parameters). We assume
such attackers could be powerful enough to connect to PLCs and to receive/inject new
messages via communication ports (e.g., launched by remote PLC management software

178PLCrypto: A Symmetric Cryptographic Library for Programmable Logic Controllers

such as Studio 5000 [Bra09b] or third-party customized program like Pycomm [AM18]). In
addition, a network attacker may leverage its communication power to download/upload
the control program from/to PLC,2 if it is allowed, and manipulate the tags of PLC (i.e.,
read and modify tags). However, we do not consider insider attackers who can physically
access the PLC and locally manipulate it. We also assume that no additional security
appliance is attached to the PLCs to provide secure communication, such as Stratix
5950 [Bra20], which may cost thousands of dollars each.

Tag Manipulation Attack. To facilitate the control and supervision of PLCs, modern
PLCs usually support online tag reading/writing capabilities without interrupting the
operations of PLCs. Any tags (variables) in the control program can be written or read
anytime, including when the program is being executed (within scan cycles). This feature
is very useful when operators need to update certain parameters of the system without
shutting down the whole service. However, this online tag manipulation capability would
trivially lead to a family of attacks on cryptographic algorithms, which we collectively call
tag manipulation attacks (TMA). A simple read or write operation to a sensitive tag can
leak sensitive information (e.g., secret keys) and compromise operational parameters (e.g.,
the rotational speed of connected centrifuges, in the case of Stuxnet [FMC11]). For the
security of PLCrypto, we introduce tag manipulation attacks, as a kind of adversaries that
are unique on PLC platforms. Tag manipulation attacks would jeopardize not only the
confidentiality but also the integrity of critical tag values. In the implementation section
of PLCrypto, we will show the effects of tag manipulation attacks on various algorithms
and how to prevent them. We assume that no extra trusted hardware is used to store the
cryptographic secrets for PLC. Note that we are the first to introduce this unique threat
model and propose countermeasures to the attacks on PLC platforms.

Sketch of the Abstract Security Model for PLCrypto. Including the aforementioned
tag manipulation attacks, we can model the attack capabilities by a setup with interactive
Turing machines and a traditional black-box security notion N of the corresponding
algorithm (e.g., N = Authenticated encryption with associated data), where

• The “game” machine maintains all variables in two mutually-exclusive collections
HL.x and TL.x, for hard-coded tags and the other tags, respectively.

• All variables HL.x in HL are assigned with a value in game initialization.

• Any variable TL.x can be created, written, read, or deleted by (the code of) the
oracles of N .

• Apart from the oracles of the traditional security notion N would expose, the
attacker would get two additional oracles readVar(varName) and writeVar(varName,
varValue).

– readVar(varName) returns the latest value of the variable TL.varName for any
currently existing variable in TL.

– writeVar(varName, varValue) sets the value of TL.varName to varValue for any
currently existing variable in TL.

• The oracle calls are atomic, so any variables created or deleted in a single oracle call
are not visible to the attacker, as in the real world.

Note that there is still a discrepancy with real life, which is ensuring that a function
can execute within a single scan cycle on a device. As this is platform-dependent, this
assumption must be checked per-device model.

2In Section 5, we will show how we can stop attackers from downloading/uploading control programs
by specific system settings.

Zheng Yang, Zhiting Bao, Chenglu Jin, Zhe Liu and Jianying Zhou 179

5 PLCrypto Overview

5.1 System Level Settings for Security

PLC Modes and Task Types. Allen Bradley’s PLC [Bra09a, Bra09b] provides different
kinds of operating modes and tasks that may affect the behaviors of attackers. Namely,
attackers may have to tailor their attack strategies under specific operating mode or task
type. In particular, the appropriate choice of operating mode and task type may provide
the necessary security guarantee required by our implementation.

PLC has four modes of operation for running a project, i.e., program mode, run mode,
test mode, and remote mode. The modes can only be selected by a hardware switch on
the PLC device, so no remote adversary can change the PLC mode once it is set. The
details of these operating modes can be found in [Bra09a]. Here the key difference (which
is also the key issue related to security) among these operating modes is that a computer
cannot remotely manipulate (e.g., download or upload) the program of PLC in the run
mode. However, it is feasible for an adversary to manipulate or read PLC programs in all
the other modes. In the run mode, PLC can carry on all its features, such as reading the
inputs, scanning the logic, and outputting the results, except for being re-programmed.
Also, the computer connected to the PLC can still remotely manage the running status
(including tag values) in the run mode.

Another factor that affects security is the type of PLC tasks. An Allen-Bradley PLC
can support and schedule multiple tasks of various types, but a PLC can run only one task
at a time. A task may be interrupted by another task which has a higher priority. There
are three kinds of tasks that we can configure, i.e., continuous task, event task, and periodic
task. The continuous task runs all the time in the background. It is used to repeatably run
the operations which do not belong to motion, communication, and periodic or event tasks.
An event task performs a function only when a specific event (trigger) occurs. A periodic
task performs a function at a specific period, and it can interrupt any lower priority tasks.
Besides, a PLC may have other integrated system-level tasks. The most relevant one is the
communication task which is responsible for exchanging data between PLC and remote
monitoring computers, e.g., online tag reading/writing and control logic editing.

A crucial security issue regarding a program task is whether it can be interrupted by the
communication task (which might send/receive sensitive tag values to/from a connected
attacker), when it is executing. According to the PLC manual [Bra09b], the periodic and
event tasks cannot be interrupted by a communication task.

PLC Settings. To guarantee the secure implementation of our cryptographic library in a
PLC against the network attackers (i.e., preventing the attackers from trivially stealing the
secrets in a PLC), we first assume that the PLC is switched to “run” model using a physical
switch on the PLC, so that the network attackers is not allowed to download/upload
a project to/from it. If the PLC needs to be re-programmed, it should be done by an
administrator with strict supervision, e.g., locally switching the mode to “program” by a
staff. In practice, it is very rare for critical infrastructures to update the control program of
PLCs because nobody wants to interrupt the operations. In this way, the network attackers
are unable to get the secrets hard encoded within a control program. In a PLC, the control
program is executed repeatedly/periodically, and the time between the repeated executions
is called a scan cycle. To prevent the network attackers from remotely reading and writing
tags within a scan cycle, we assume that all tasks implementing cryptographic algorithms
are assigned to be event or periodic tasks with priority higher than the communication
task, so that they cannot be interrupted by the communication task. In this setting, within
scan cycles, the network attackers cannot read the intermediate tag values which may
contain secrets, but all variables are still readable/writable by the attacker after PLCrypto
thread completes execution or between PLCrypto executions.

180PLCrypto: A Symmetric Cryptographic Library for Programmable Logic Controllers

Security Validation. We implemented the tag manipulation attacks (TMA) against
our Allen-Bradley PLC via Studio 5000 (the official tool for managing every detail of an
Allen-Bradley PLC, including read-only tags). In our experimental attack, we develop a
toy task which does the following steps:

• Initialize DINT tags TARGET := 0;

• Repeat the code TARGET := TARGET + 1 for 100 times;

• After the above loop execution, if TARGET ≤ 100, TARGET := 0, else set the
attack result ATTACK_RESULT := TARGET.

Note that we are testing the modification capability by assigning TARGET with a
value that is larger than 100 via Studio 5000 during the execution of the above toy task.
If such a modification of TARGET is successful within the execution of the toy task, then
it will not be cleared in the last step, and we will observe the modified value in the other
tag ATTACK_RESULT.

We first set the type of the toy task to be continuous. Then, through the run-time tag
management interface of Studio 5000, we can see the change of the TARGET during the
execution, and we can manually modify its value using Studio 5000. However, when we
change the PLC setting as mentioned above (i.e., we change the type of the toy task to
be periodical and set its priority to be higher than the communication task), then we can
only observe zero through Studio 5000. This means that the TMA within one scan cycle
are prevented if we properly configure task types and PLC modes. More details on PLC
modes and tasks are in Section 3.1 (also in the manual [Bra09b]).

However, a PLC task is usually repeatedly executed and two executions of the same
task share tags, so we still need a solution to protect the critical tags (e.g., cryptographic
keys) between two consecutive executions from TMA. In other words, we still need to
prevent TMA that manipulates tag values between scan cycles, which we will discuss in
Section 5.3.

5.2 Overview of Implementation Tricks
Our primary security concern on PLCrypto implementation is to resist the tag manipulation
attacks, in particular for protecting the cryptographic keys. Besides all system settings
above, the most important implementation trick for this problem is to hard-code the
concrete values of critical tags (either keys or parameters) into the program code to protect
the confidentiality of them, since it is possible to prevent the attackers from accessing
the program code after the system is set to the RUN model (as discussed in Section 4). In
our implementation, we will leverage two hard-coding strategies:

• Hard-coding with Runtime Loading (HC-RL): Unlike the program on PC
(which is immune to TMA), it is insecure to load the tag values once and use them
across multiple scan cycles on PLC, since adversaries can trivially read the tag values
via communication tasks in the interval between two executions of the algorithm.
Note that the attacker does not have to issue read/write requests exactly in the
interval to manipulate the tag values successfully. The received read/write requests
will be scheduled when the communication task is running. In this HC-RL strategy,
an algorithm must load the concrete values of critical tags on the fly at the beginning
of every execution (in a scan-cycle), e.g., key_tag := 12345. At the end of the
execution, the algorithm should erase the tag, e.g., key_tag := 0, if it is a secret,
such as a cryptographic key. This strategy is suitable for the situation when only
a small amount of tags are sensitive and need to be hard-coded. This approach is
simple and easy to implement.

Zheng Yang, Zhiting Bao, Chenglu Jin, Zhe Liu and Jianying Zhou 181

• Hard-coding at Where-used (HC-WU): When there are lots of hard-coding
tags, the HC-RL approach may become a performance bottleneck of the implemen-
tation. For example, as each number ai in the parameter A = {a0, a1, . . . , aln−1}
of subset-sum based OWF would be represented by dln/31e DINT numbers in the
implementation, it requires dl2n/31e = 2304 assignments (when ln = 256) to load the
entire A matrix, which would take a lot of time on a PLC. Hence, in this solution,
we hard-code a tag value at where it is used. E.g., for an expression t[i] := m[i] + a[i]
where a[i] stores a secret tag value 12345, we can transform it into t[i] := m[i]+12345.
However, this approach has a side-effect: if such a hard-coded expression is wrapped
in a loop statement, e.g., for i := 1 to 100 do t[i] := m[i]+a[i], then we have to unroll
the loop into a list of expressions realizing the equivalent function with concrete index
i, such as t[1] := m[1] + 12345, t[2] := m[2] + 12345, . . ., t[100] := m[100] + 12345. In
PLCrypto, we utilize a Python script to generate these expressions automatically.

Another goal of this paper is to seek efficient implementations of the selected algorithms
on PLC. The core objective of our optimization technique is to reduce the number of
computation steps. To do so, we shall take full advantage of the bit-accessibility of ST to
improve the efficiency of implemented algorithms and realize the necessary functionalities
like shifting and rotation. Besides, we extensively rely on pre-computation in conjunction
with hard-coding strategies to improve the performance. In other words, we can pre-process
many computation steps of an algorithm and hard-code them in exchange for efficiency.
We summarize the optimization ideas in the following:

• Bit-wise Read and Write (B-RW): With the bit-wise accessibility of ST, we
can read and write a bit of an integer just like accessing the integer (e.g., obtain
the carry bit in big-integer addition), unlike the implementation (e.g., [BKL+12])
based on C language that needs shifting and AND operations.3 With the bit-wise
write capability, we can erase bits with few cheap assignments. This could be useful
in realizing the modular operations modulo 2n, i.e., we only need to clear the bits
beyond the (n− 1)-th bit.

• Bit-wise Move (B-MV): Thanks to B-RW, we could also directly move a bit to
the target position with only one assignment statement, e.g., s.[j/32] := t.[i] moves
the i-th bit of t to the j/32-th bit of s. Relying on this approach, we could efficiently
implement the basic functionalities, including shift/rotate and permutation box. In
addition, when the indices can be pre-determined (or pre-computed), e.g., in bit-wise
rotations, we can pre-compute all target positions (e.g., j/32 in the above example)
and hard-code all movement steps following the HC-WU strategy.

• Merge Bit-wise Operations (B-MO): The objective of this approach is to merge
bit-wise operations of a procedure (e.g., permutation box) into other procedures
(e.g., substitution box) instead of executing these procedures independently so that
it could reduce some intermediate computation steps. For example, one can apply
the permutation box to each intermediate substitution result on the fly rather than
at the end of the substitution procedure (to avoid the steps for assembling the small
intermediate substitution results to a large value). An example of this optimization
approach could be found in our implementation of PRESENT.

Nevertheless, to realize the above general hard-coding and optimization ideas, we still
need to study and test the concrete optimization steps for specific algorithms.

3Using AND operation to get a nibble can outperform B-RWonly when we are accessing the least
significant bits (LSB). Otherwise, we have to shift the extracted bits to LSB using division, which costs
more time. Things become more complicated if the sign bit is involved.

182PLCrypto: A Symmetric Cryptographic Library for Programmable Logic Controllers

5.3 Security Principles against Tag Manipulation Attacks
Overview of Security Principles. We summarize our comprehensive principles for
preventing tag manipulation attacks concerning different attack targets as below:

• Confidentiality and Integrity of Any Tags Within One Scan Cycle: As we
mentioned in Section 5.1, once the mode of the PLC is set to the RUN mode and
the cryptographic task has a higher priority than that of the communication thread,
remote attackers can no longer interrupt the cryptographic task within one scan
cycle and steal/compromise any intermediate values. This principle can be seen in
all the algorithms implemented.

• Confidentiality of Any Secret Constants between Scan Cycles: Even if we
have the necessary PLC system settings mentioned above, the communication task
will still be scheduled between every two consecutive scan cycles. Thus, an attacker
can request to read/write to any tags when the cryptographic task is not running.
As a rule of thumb, at the end of a cryptographic task, all intermediate values that
can potentially leak the secret must be cleared. Also, all secret values (e.g., secret
keys) are hardcoded in the control program using HC-RL or HC-WU. Since the
PLC is at the RUN mode, the attacker cannot access the program itself; he/she has
no way to directly read the secret values from the program or the tags. This design
principle is used in all algorithms involving a secret.

• Integrity of Constants between Scan Cycles: In cryptographic algorithms,
pre-defined constants play a critical role. Sometimes, if the constants are tampered
with by an attacker, a fault injection attack can be launched. To prevent such
an attack, we apply our hard-coding implementation tricks HC-RL and HC-WU.
Essentially, all constants need to be loaded again from the program at the beginning of
a cryptographic task to prevent any malicious modification of the constants between
scan cycles. We present an example of this threat scenario in the implementation of
subset-sum based OWF in Section 6.1, where we need to protect the integrity of the
public constant matrix.

• Integrity of Public Variables between Scan Cycles: The primitive algorithms
(like OWF, BC, MAC, and HASH) we implemented are all stateless, so we can safely
clean all variables used inside the stateless algorithms. However, when we use the
algorithms in a larger context (e.g., in a protocol or in a certain mode), we may
need to keep a public state variable over multiple scan cycles. This public variable
is subject to TMA as well. We have to compute a MAC to protect the integrity
of the states at the end of a cryptographic task, and check its integrity before it is
used again in the next scan cycle. Fortunately, the MAC algorithm implemented
is very efficient. An example of this practice can be found in Section 7 where we
integrate multiple algorithms and implement a protocol called PoA, in which a public
monotonic counter needs to be maintained.

• Confidentiality and Integrity of Secret Variables between Scan Cycles:
Though we have not encountered any secret variables that need to be kept in multiple
scan cycles in our implementations, for the sake of completeness, we will recommend
using encryption and MAC algorithms (or an Authenticated Encryption scheme) to
protect any secret variables in such a case.

Minimal Soft/Hardware Requirements. Given the above security analysis against
tag manipulation attacks, we summarize the minimal software and hardware features
required for securely running PLCrypto as follows:

Zheng Yang, Zhiting Bao, Chenglu Jin, Zhe Liu and Jianying Zhou 183

1. The PLC supports standard ST defined by IEC-61131-3;

2. The PLC supports priority based task scheduling and supports at least one kind of
task whose priority level is higher than that of the communication thread;

3. The PLC has a hardware switch to set the PLC to run mode, preventing remote
users from access the control program;

4. The PLC has enough memory space to run PLCrypto code as specified in Table 6
for each algorithm.

5.4 Selection Criteria of Algorithms in PLCrypto
Generally speaking, we mainly select cryptographic algorithms which are standardized and
efficient. We also consider algorithms (e.g., subset-sum based OWF) that are provably
secure and efficient and can serve as an easy-to-understand example for demonstrating
the TMA threats. In consideration of efficiency, it is possible to apply the above hard-
coding and optimization strategies as metrics for selecting the cryptographic algorithms in
PLCrypto. In the following, we list our selection criteria in detail:

1. Standardized (STD). Standardized algorithms are usually widely recognized and
accepted in practice, so our top priority of choosing algorithms is to pick algorithms
standardized by either ISO (International Organization for Standardization) or NIST
(National Institute of Standards and Technology).

2. Promising Performance on PLCs (PPP). We also try to seek algorithms that are
more suitable for PLC, such as subset-sum based OWF and SPECK. Our benchmark
results for such algorithms may provide a baseline for future research.

3. Pre-computation Friendly (PCF). Algorithms that are easy to pre-compute
their expensive operations could reduce the computation cost, such as PHOTON
with a precomputed tables-based implementation (applying both the SBOX and the
MixColumns coefficients at the same time).

4. Bit-wise Operable (BWO). The above bit-wise optimization strategies can opti-
mize algorithms that comprise of many bit-wise operations (such as permutation
box).

5. Short Keys and Parameters (SKP). Since keys and parameters should be hard-
coded due to TMA, this criterion would affect the performance significantly.

Table 3 summarizes the techniques and selection criteria applied to the algorithms in
PLCrypto. The PoA is used as a “use case” to show: i) usage of algorithms in PLCrypto;
ii) example of protecting the integrity of tags across scan-cycles; iii) new performance
results of PoA on commercial PLCs.

6 PLCrypto Implementation
In this section, we elaborate on the implementations of selected cryptographic algorithms
in PLCrypto. Our implementations are done on PC and PLC, respectively. On a PC, we
mainly use Python to automate the initialization and code generation (e.g., key sampling,
parameter generation, pre-computation, and key-dependent hard-coding) of algorithms. To
load the parameters (e.g., A of Fsss), PLC can run an independent task for initializing those
parameters (represented as tags) used by the cryptographic algorithms. For readability,
we skip the details of the initialization task, which just consists of a few assignment steps

184PLCrypto: A Symmetric Cryptographic Library for Programmable Logic Controllers

Table 3: Overview of algorithms in PLCrypto, and their corresponding selection criteria
and optimization tricks.

Algorithms Selection Criteria Hard-coding Optimization
Subset-sum based
OWF, UOWHF, OTS

PPP, PCF
BWO HC-WU B-RW

Bit-wise Shift/Rotate PPP, PCF
BWO HC-WU B-MV

Big-integer Operations STD, BWO N/A B-RW

Chaskey STD, PPP HC-RL Bit-wise Rotate
Big-integer Add/Sub

PRESENT STD, PCF
BWO

HC-RL
HC-WU B-MO

SPECK, SIMON STD, PPP HC-RL Bit-wise Rotate
Big-integer Add/Sub

PRF/PRG STD, PCF HC-RL
HC-WU

PRESENT-CTR
SPECK-CTR

PHOTON STD, PCF HC-RL B-RW
SPONGENT STD, PCF HC-RL B-MV

PoA Use Case HC-RL
HC-WU

SPECK-CTR
Chaskey
OWF, UOWHF, OTS

in the ST program. Here we focus on describing the detailed optimizations of algorithms
implemented on PLC using ST. As the secret keys of algorithms should be hard-coded, the
keyed functions will no longer explicitly take as input the keys in the following description.
Here we focus on describing the detailed optimizations of algorithms implemented on PLC
using ST. Also, we present some pseudo-codes in Appendix C.

Notations. Let ≪̂ and ≫̂ be hard-coded left rotation and right rotation operations
implemented on a PLC. �̂ and �̂ represent hard-coded left/right shifting operations. And
DN denotes the number of DINT variables that are required to represent a big number.

6.1 Implementation of OWF and UOWHF
In this subsection, we show the implementations of subset-sum (sss) based OWF and
UOWHF. We include the subset-sum based OWF because it is much more efficient than
using other lightweight cryptographic hash functions as OWF. And we will use it as an
example to show a special form of TMA when the attacked tags are parameters (which
would be usually treated less carefully) and the feasibility of our optimization approaches.

In the following, we first introduce a concrete TMA on subset-sum based OWF. Then
we present two approaches to implement OWF: the first one follows the original steps of
the algorithm, and the second one exploits a time-space trade-off to improve the efficiency
of OWF by leveraging hard-coding strategy HC-WU and optimization approach B-RW.

A Tag Manipulation Attack on OWF. We first study the importance of hard-
coding the parameters. Consider the situation that one initializes the parameter A =
〈a0, a1, . . . , aln−1〉 once with a separate initialization task but uses it repeatedly across
executions/scan cycles. However, when such an initialization task is done, the network
attackers are able to modify A to launch a tag manipulation attack to recover the pre-image
x. For example, to obtain j-th bit x, the attacker only needs to set {ai} = 0 for i 6= j and
i ∈ [ln]. It is obvious that the evaluation result of OWF would be either aj or 0 that could
be used to infer x[j] trivially.

Zheng Yang, Zhiting Bao, Chenglu Jin, Zhe Liu and Jianying Zhou 185

Algorithm 1: Evaluation of Subset-sum based OWF
Input: DINT ARRAY x[DNt] where DNx = d ln32e.
Output: DINT ARRAY t[DNx], DNt := d ln31e.
1: v := 0; //v is used for indexing the bits of x
2: u := 0; // u is a DINT index of x
3: Initialize DINT ARRAY {A[i, j]}i∈[ln],j∈[DNt], which stores the values of the

parameter 〈a0, a1, . . . , aln−1〉.
4: for i := 0 to ln − 1 by 1 do
5: if v = 32 then
6: v := 0; u := u+ 1; //switch to the next 32-bit block
7: end if
8: if x[u].[v] then
9: {t[j]}j∈[DNt] := {t[j]}j∈[DNt]+̂{A[i, j]}j∈[DNt];
10: end if
11: v := v + 1;
12: end for
13: return {t[i]}i∈[DNt];

Baseline Implementation of OWF. To avoid the TMA, we can load A on the fly in
each OWF evaluation in this implementation scenario. As a baseline, we first realize the
OWF following HC-RL hard-coding strategy. To realize an addition modulo 2ln , we
appeal to the standard multiple-precision addition [MvOV96, Algorithm 14.7]. We let
+̂ denote the big-integer addition implemented on PLC modulo 2lb where lb ≥ 32. To
efficiently get the carry bit, we choose to use a digit base 231 to realize big-integer addition
so that we can obtain the carry bit (i.e., the sign bit of a DINT variable) with only one
assignment statement. In this way, we can avoid dealing with the overflow caused by the
sign bit, which may need many additional judgments or logical operations.

The input x ∈ {0, 1}ln of Fsss(x,A) is represented by DNx = d ln32e DINT variables
while we realize the evaluation sub-algorithm on PLC. We initialize the parameter A
hard-coded in the PLC program by sampling a random ln ×DNt two-dimensional 31-bit
integer array A[ln,DNt] on PC, where the set of integers {A[i, j]}j∈[DNt] represents the
i-th ln-bit number ai of A, and DNt = d ln31e.

The evaluation sub-algorithm of Fsss(x,A) is shown in Algorithm 1. We can leverage the
B-RW optimization idea to easily get a bit of x by x[u].[v], where the variable u ≤ DNx
is an ARRAY index and the variable v ≤ 30 is bit index of x. So the evaluation of Fsss
can be realized with two-layer nested loops, in which the outer layer is to decide whether
A[i, ·] should be involved based on x[u].[v], and the inner loop is to calculate the ln-bit
big-integer addition.

Faster Implementation of OWF. Note that the initialization of the parameter A in
Algorithm 1 requires ln × DNt-times assignments, which take almost half of the com-
putational cost of the entire algorithm. To improve the performance, we could apply
HC-WU hard-coding and B-RW optimization strategies. Specifically, we can leverage
“If” statement in ST to hard-code A and all computation steps involved in Equation 1.
To do so, we make use of Python to automatically generate all of the ln “If” statements
between Line 8 and Line 10, with concrete values of u, v, i, j, DNt and DNx. In the
meantime, the big-integer addition involved in each “If” statement is hard-coded following
strategy HC-WU.

Implementation of UOWHF. The UOWHF Hsss with fixed message input length can
be straightforwardly obtained by an OWF Fsss

′ with customized input and output spaces,

186PLCrypto: A Symmetric Cryptographic Library for Programmable Logic Controllers

so we have Hsss = Fsss
′. Instead of using length-preserving OWF, we specifically set the

output length of Fsss
′ to be half of the input, i.e., lm = ln and lh = ln/2. Then each

element ai in the public parameter A = {a0, a1, . . . , aln−1} has lh-bit. The implementation
of Fsss

′ is similar; thus, we omit repetition here. To extend the message space, we can
divide an arbitrarily long message into multiple ln/2-bit message blocks and hash them
one by one iteratively.

Security Analysis. Here, we focus on analyzing the resistance of TMA against our
implementation of OWF. The security of UOWHF implementation is implied by that
of OWF. Note that the subset-sum based OWF only leverages constant tags between
scan cycles, i.e., the parameter A. The network attacker cannot manipulate the HC-RL
hard-coded tags of A between two scan cycles since the OWF task would load and refresh
the tag values in every scan cycle from the code. By our PLC settings, the network attacker
cannot read/write the tags (including parameter A and all other intermediate results)
during the execution of an OWF task. In a nutshell, our OWF implementation blocks all
attack surfaces of TMA attackers.

Furthermore, it is also important to understand the side-channel leakage of the imple-
mentation via some obvious side channels like timing.4 Note that the performance of OWF
depends on the number of one bits of the input value, i.e., no operations are done for zero
bits. Hence the network attackers may exploit timing-based side-channel information to
infer the input of the OWF. We roughly analyze this kind of threat based on the different
usage of OWF. If the OWF is used as a hash function for message compression, then
runtime would have no impact on the collision resistance of it. When the input of OWF
is a secret, the runtime of OWF will be close to the average case since the input should
be chosen at random with sufficient large entropy (so the hamming distance between two
secrets should be close). Nevertheless, to resist timing-based side-channel attacks, the
runtime of OWF is better to be constant. To achieve this, one could add dummy operations
to handle the zero bits in the input to ensure that the runtime of OWF to be always
the worst-case performance. We leave a concrete solution for preventing timing-based
side-channel attacks as one of the future works.

6.2 Shifting and Rotation Operations
Shifting and rotation operations are extensively used by symmetric cryptographic algo-
rithms. Unfortunately, some PLCs [Bra18a] do not provide any bit-wise shifting/rotation
instruction in structured text (ST). Therefore, we have to develop bit-wise shifting/rotation
operations first using ST as a building block for implementing other algorithms. Of course,
a shifting operation can be realized by multiplication or division operations; however, such
an approach is inconvenient and inefficient for signed DINT variables and big integers.
Note that some PLCs do not support 32-bit unsigned integers. So a few more operations
(including arithmetic and logic operations) should be carried out to deal with the sign
bit and overflow, in particular when a big integer is involved. Another benefit of our
hardcoded shifting/rotation operations is its constant runtime which is independent of the
positions being shifted/rotated. Hence, they leak nothing through timing.

Our solution is to leverage the bit-wise accessibility of a DINT variable to directly move
a bit into the corresponding target position, i.e., by utilizing the optimization approach
B-MV. And it can be easily applied for big integers, which are represented by a few DINT
variables. We will call this approach as bit-assign shift/rotate. Specifically, we develop a
function Shift(Dir, isRot,m, pos) to realize all shift/rotate operations that are needed by

4Since the exact execution time of atomic operations may vary from one platform (e.g., the underlying
processor and the compiler) to another, in this paper, we analyze timing attack resilience of PLCrypto
based on the number of atomic operations. The exact timing attack resilience needs to be carefully tested
before PLCrypto is deployed.

Zheng Yang, Zhiting Bao, Chenglu Jin, Zhe Liu and Jianying Zhou 187

PLCrypto, where Dir ∈ {L,R} = {1,−1} denotes the direction in either left (L) or right
(R), isRot ∈ {0, 1} is the operation type where 0 denotes shifting and 1 indicates rotation,
m is the operand being shifted or rotated, and pos is the number of bits to shift or rotate.
The concrete steps of Shift are shown in Algorithm 2.

Algorithm 2: Shift/Rotate Operations
Input: DINT Dir ∈ {L,R} = {1,−1} where L = 1 is left and R = −1 is right,

BOOL isRot ∈ {0, 1}; DINT ARRAY m[DNm]; and SINT pos, where
1 ≤ pos ≤ (32 ·DNm)− 1.

Output: DINT ARRAY m[DNm], m := m ≶ pos where ≶∈ {�̂, �̂,≪̂,≫̂}.
1: posp := pos·Dir; //posp would be negative if Dir = −1
2: if isRot = 1 then
3: for i := (32 ·DNm)− 1 to 0 by 1 do
4: NP := (i+ posp) MOD (32 ·DNm); //new position
5: r[NP/32].[NP MOD 32] := m[i/32].[i MOD 32];
6: end for
7: end if
8: if isRot = 0 then
9: B := (Dir + 1)/2; Start := (32 ·DNm)− 1− pos·B;
10: End := pos·B − posp;
11: for i := Start to End by -1 do
12: r[(i+ pos)/32].[(i+ pos) MOD 32] := m[i/32].[i MOD 32]; //move i-th bit

to new position
13: end for
14: end if
15: return {m[i]}i∈[DNm] := {r[i]}i∈[DNm];

Remark 1. We stress that all arithmetic operations in Shift can be pre-computed and
hard-coded if pos is known in a specific algorithm (e.g., Chaskey and SPECK). That is, we
could apply the hard-coding strategy HC-WU and use Python to generate all assignments
involved in Line 5 or Line 12 with concrete array index values. So the hard-coded version
of Shift is very efficient since it requires only a constant number of assignments determined
by the bit-length of m.

In Figure 3, we show a code snippet of a concrete hard-coded rotate function with
64-bit operator, i.e., Speck_SR_m≪̂3, used in the implementation of SPECK. Here
the rotated message Speck_SR_m is represented by two 32-bit DINT variables, where
Speck_SR_m[1] stores left-most 32-bit and Speck_SR_m[0] otherwise. The rotation result
Speck_Rotate_Result is also stored in two DINT variables. For example, to rotate the
52-th bit to 3 positions is to move Speck_SR_m[1].[19] to Speck_Rotate_Result[1].[22].

We will use the set of operators {�̂, �̂,≪̂,≫̂} to denote all kinds of operations
realized by Shift(Dir, isRot,m, pos), e.g., m�̂pos is short for Shift(1, 0,m, pos).

6.3 Implementation of MAC Algorithm Chaskey
Chaskey [MMH+14] is a very efficient MAC family specifically designed for 32-bit micro-
controllers by Mouha et al. It is standardized by ISO/IEC 29192-6:2019 [CHA19]. To
initialize the program, we first generate a MAC key on PC so that it can be hard-coded
following strategy HC-RL.

The MAC evaluation algorithm of Chaskey is a permutation based scheme. We
implement the most efficient permutation πc [MMH+14, §3.2] which is realized by our

188PLCrypto: A Symmetric Cryptographic Library for Programmable Logic Controllers

Figure 3: Code Snippet of Hard-coded Rotation

new shift/rotate Algorithm 2. Other steps of Chaskey are implemented following its
specification.

Security Analysis. Since we only need to protect the keys of Chaskey, which are
protected based on our HC-RL hard coding strategy, no network attackers can read/write
those fixed tags in multiple scan cycles. Similarly, the network attacker cannot manipulate
the tags within one scan cycle because of our PLC settings. Hence, our implementation of
Chaskey can prevent TMA.

Moreover, The major operations, i.e., rotation, in the permutation sub-algorithm πc is
hardcoded as presented in Section 6.2 have constant-time execution time. And all other
codes of Chaskey mainly involve standard arithmetic operations whose performance is
independent of the input message or internal states. Hence, our Chaskey implementation
has constant runtime. Namely, it does not leak any timing-based side-channel information
to network attackers.

6.4 Implementations of Block Ciphers: PRESENT, SPECK, and SI-
MON

In this subsection, we introduce the implementations of block ciphers included in PLCrypto.
The first one is PRESENT invented by Bogdanov et al. [BKL+07], and recently standardized
by ISO/IEC 29192-2:2019 [PRE19]. The other two cipher families included in PLCrypto
are SPECK and SIMON, respectively, which are designed by Ray et al. [BSS+13], and
standardized by ISO/IEC 29167-21:2018 [SPE18]. Both schemes support various parameter
sets and key sizes, so they offer more flexibility than PRESENT for users in choosing
proper parameters for their applications.

The key generation of all these block ciphers can be pre-computed, so we implemented
the key generation procedure on PC in Python and hard-coded the round keys in the
generated ST code of the encryption and decryption schemes following HC-RL. Since
the decryption is an inversion of the encryption for all implemented block ciphers, we will
just describe the implementations of the encryption algorithms. Since we pre-compute key
scheduling of the block ciphers in our implementation, it will limit the usable modes of op-

Zheng Yang, Zhiting Bao, Chenglu Jin, Zhe Liu and Jianying Zhou 189

Algorithm 3: Encryption of PRESENT
Input: DINT ARRAY m[2] storing 64-bit message.
Output: DINT ARRAY c[2], storing 64-bit ciphertext.
1: Assign hard-coded keys k1|| . . . ||kT to KEY array {K[i]}i∈[T+1];
2: for i := 0 to T − 1 by 1 do
3: AddRoundKey: St := St XOR m;

i.e., St[0] := St[0] XOR m[0] and St[1] := St[1] XOR m[1]
4: Run the merged SBOXLayer and PBOXLayer as:
5: for j := 0 to 15 by 1 do
6: i) Assign j-th nibble of St to tag stmp.[z] := St[u].[4 ∗ v + z],

where z ∈ [4], u = j/8, and v = j MOD 8;
7: ii) Obtain the substitution result stmp := SBOX(stmp);
8: iii) ptmp[blk].[pos] := stmp.[δ], where δ ∈ [4],

blk := PBOX(j∗4+δ)
32 , and pos := PBOX(j ∗ 4 + δ) MOD 32;

9: iv) Update the state St[0] := ptmp[0] and St[1] := ptmp[1];
10: end for
11: end for
12: Run AddRoundKey to generate final ciphertext
13: Clear {K[i]}i∈[T+1], St, stmp, and ptmp;
14: return c = c[0]||c[1];

erations; e.g., turning a block cipher in PLCrypto into a hash function by DaviesâĂŞMeyer
mode may not be feasible [MVOV18].

Implementation of PRESENT. It is built based on a variant of SP-Network [MvOV96]
that consists of T = 31 rounds. Let SBOX be a 4-bit substitution box, and PBOX be a
64-bit permutation box. PRESENT can encrypt a lm = 64-bit message block, and support
two kinds of key lengths lk ∈ {80, 128}.

Since the round key generation can be pre-computed on a PC, we just describe
the realization of the rest of three main procedures: AddRoundKey, SBOXLayer, and
PBOXLayer. The AddRoundKey is used to XOR the round keys with the current round
state St initialized with the message in the first round. The function of SBOXLayer is to
get each 4-bit input nibble from the St for the SBOX table lookup, which can be done via
just four assignment operations because we can directly access each bit of a DINT variable
with ST. Specifically, it can get the j-th 4-bit word of St as stmp.[z] := St[u].[4∗v+z], and
obtain the substitution stmp := SBOX(stmp), where z ∈ [4], u = j/8, and v = j MOD 8.
However, we observe that some parts of the steps of SBOXLayer and PBOXLayer can
be merged following the optimization idea B-MO. To execute the complete SBOXLayer,
each SBOX look-up result stmp should be assembled back to St (nibble-by-nibble), so that
the final resulting state St would be taken as input to the PBOXLayer. Such assembling
steps may require 64 assignments, which dominate 1/3 steps of the entire SBOXLayer
and PBOXLayer (where an assignment statement roughly costs 1.17 µs). However, we
figure out that it is possible to directly input the SBOX result stmp into PBOXLayer for
permutation since the corresponding position of each bit of stmp in St is pre-determined.

We implement the encryption of PRESENT as Algorithm 3. For efficiency, we can
also pre-compute the arithmetic operations in SBOXLayer(St) and PBOXLayer(St), i.e.,
4 ∗ v + z, j/8, j MOD 8, blk := PBOX(j ∗ 4 + δ)/32, and pos := PBOX(j ∗ 4 + δ) MOD 32
in Step 4. Namely, we can implement SBOXLayer and PBOXLayer with only a few
assignments after applying a HC-WU-like hard-coding strategy. We stress that the
arithmetic operations involved in these steps shown in Algorithm 3 are just used here for
demonstrating our intuition.

190PLCrypto: A Symmetric Cryptographic Library for Programmable Logic Controllers

In Figure 4, we show a code snippet of the hard-coded SBOXLayer and PBOXLayer in
our implementation of PRESENT. The involved SBOX is PT_Sbox = [12, 5, 6, 11, 9, 0,
10, 13, 3, 14, 15, 8, 4, 7, 1, 2], and PBOX is PT_Pbox = [0, 16, 32, 48, 1, 17, 33, 49, 2, 18,
34, 50, 3, 19, 35, 51, 4, 20, 36, 52, 5, 21, 37, 53, 6, 22, 38, 54, 7, 23, 39, 55, 8, 24, 40, 56, 9,
25, 41, 57, 10, 26, 42, 58, 11, 27, 43, 59, 12, 28, 44, 60, 13, 29, 45, 61, 14, 30, 46, 62, 15, 31,
47, 63], where PT_Pbox is implied by the indices of the temporary tag PT_PState (in
Figure 4) since it is hard-coded.

Taking the third times substitution result PT_State_tmp in Figure 4 as an example,
the least significant bit PT_State_tmp.[0] of it corresponds to the 8-th bit of the result of
SBOXLayer, so we could move it to the new position PBOX(8) = 2. Namely, this results
in the assignment statement PT_PState[0].[2]:=PT_State_tmp.[0].

Figure 4: Code Snippet of the Hard-coded SBOXLayer and PBOXLayer of PRESENT

Implementation of SPECK and SIMON. The key techniques in our implementations
are our tailored shifting/rotation operation and big-integer Add/Sub functions. The
encryption algorithms of SPECK implemented on PLC only take a message as input since we
hard-code the concrete values of pre-computed round encryption keys following theHC-RL
strategy. To implement SPECK with a 128-bit message (each block having 64-bit), we
leverage the big-integer addition (in encryption) and subtraction (in decryption) [MvOV96,
Algorithm 14.9], respectively. The implementation of SIMON is similar to that of SPECK,
which mainly relies on our hard-coded shifting/rotation function.

Implementation of PRF and PRG. Here we leverage block ciphers to realize both
pseudo-random function (PRF) and pseudo-random generator (PRG), following the ap-
proach standardized in [SPLI06, EB07]. Note that Chaskey can be viewed as a PRF, and
running in counter mode turns it into a PRG [MMH+14]. Hence, counter mode Chaskey
is included in the comparison as well. We consider a PRG to have the same input as PRF,
i.e., the PRG evaluation function has an additional input message x ∈ {0, 1}lx that could
be the counter indexing the generated randomness.

Specifically, we utilize PRESENT, SPECK, and Chaskey to implement both PRF and
PRG. To generate longer random bits for PRG, we leverage counter (CTR) mode in their
operations.

Zheng Yang, Zhiting Bao, Chenglu Jin, Zhe Liu and Jianying Zhou 191

Security Analysis. Due to the HC-RL hard coding of round keys, our block cipher
implementations can resist TMA as well. From the algorithmic point of view, PRESENT,
SPECK, and SIMON have no branches in the program. In addition, the hard-coded
SBOXLayer/PBOXLayer, and the shifting/rotation operations in SPECK and SIMON
run in constant time, so our implementations of block ciphers have constant runtime. Note
that the security of our PRF/PRG is implied by that of the underlying block ciphers.

6.5 Implementations of Collision Resistant Hash Functions: PHOTON
and SPONGENT

As described in the reference implementation of PHOTON [JG19], the most expensive three
procedures SubCell, ShiftRows, and MixColumnsSerial in its core permutation function
πp can be pre-computed (by running the BuildTableSCShRMCS() function [JG19]), it
can yield a two-dimensional ld × 2ls table (SCShRMCS table) that can be used for online
fast internal state calculation, where ls is the bit-length of internal state. We adopt
identical optimization in our implementation as well. Meanwhile, the SCShRMCS table is
hard-coded with the HC-RL approach since it is not very large.

Since SPONGENT has a PRESENT-like permutation, we mainly hard-coded the entire
PBOX layer with a similar idea in the PRESENT implementation. This roughly saves 4x
computational cost comparing to straightforwardly translate reference implementation of
SPONGENT [BKL+12] into ST code.

Security Analysis. Similar to the implementations of block ciphers, we protect the
parameters (i.e., SBOX and PBOX) of both schemes using the hard coding strategies.
Moreover, our implementations have constant runtime by their algorithm designs and our
hard coding tricks.

7 Case Study: Proof of Aliveness
Background. Proof of aliveness (PoA) is a cryptographic notion that was recently
proposed by Jin et al. [JYvDZ19]. Although PoA was proposed to attest the aliveness
(working status) of CPS devices like PLC, to the best of our knowledge, it has never
been implemented on a commercial off-the-shelf PLC. Here we briefly introduce the
advanced PoA protocol ΠPRG

OWF in [JYvDZ19]. ΠPRG
OWF is composed of two procedures: i)

proof generation; and ii) proof replenishment, where proof generation algorithm is used
to generate a publicly verifiable proof every ∆s seconds to attest its aliveness, and proof
replenishment algorithm is used to re-initialize a new protocol instance when the proofs of
the current instance are used up.

The protocol ΠPRG
OWF has a multiple-chain structure to generate proofs, where the number

of the sub-chain is denoted by a parameter η. The i-th sub-chain of ΠPRG
OWF is an OWF-chain

that starts from a head pi0 and ends at the tail piN where N is the number of nodes in a
sub-chain. The tail of the sub-chain is known by the verifier, and the nodes in sub-chains
are periodically sent from the prover to the verifier in reverse order (from the tail to the
head) as aliveness proofs. The heads of all OWF sub-chains are linked like a chain of
random numbers generated by a PRG. The replenishment of a protocol instance means
that the prover will select a new seed for PRG, and create a new multiple-chain structure,
and commit all the tails (for verifying the new protocol instance) of sub-chains to the
verifier using a one-time signature (OTS) scheme, whose signing keys are the sub-chain
heads of the current instance.

A Tag Manipulation Attack on PoA. We stress that it is not secure to implement
the PoA on PLCs directly following the original specification. According to the original
design [JYvDZ19], we have to store some critical tags during the full lifetime of the protocol,

192PLCrypto: A Symmetric Cryptographic Library for Programmable Logic Controllers

e.g., protocol instance counter P and sub-chain counter S. However, since these tags need
to be updated frequently, they cannot be hard-coded in the program. Attackers can tamper
with the tags, i.e., attackers can get any unused proofs by manipulating either P or S to
trick PLCs to generate the future proofs that should not be generated at the current time.

Modifications of the Original PoA Protocol. To protect critical tags, we can generate
a MAC value of tags and check their integrity at the beginning of a new scan cycle. Because
of the reading/writing capability of network attackers, we cannot cache the proofs (in the
memory) as in [JYvDZ19]; otherwise, all future proofs cached in the memory will be read
by the attackers.

Implementation. To implement ΠPRG
OWF in [JYvDZ19], we used Fsss, PRG realized by

Chaskey-CTR, Chaskey, and Hsss in PLCrypto. The head nodes of sub-chains are generated
by PRG, as pi0 := PRG(P||i||lr). The OWF is instantiated with Fsss with lr = 256 (which is
much more efficient than any other cryptographic hash functions like PHOTON on PLC).
To replenish proofs, we run the initialization algorithm on PLC first and then sign the
new verification state (tails) using Lamport’s one-time signature (OTS) [Lam79] using the
sub-chain heads of signing keys. So the minimum number of sub-chains is 256, i.e., the
number of signing keys of OTS. Before signing the tail nodes, we compress them using
UOWHF Hsss as a message domain extender [SPW06]. Also, we need to run the whole
initialization in one scan cycle to avoid calculating MAC for too many tags. Fortunately,
we can choose to use a relatively short sub-chain due to the replenishment feature, so the
computation cost of the initialization is adjustable as demanded.

Security Analysis. The security of our PoA is guaranteed by the secure implementation
of the concrete instances of its building blocks. The integrity of the counter between scan
cycles relies on the security of the MAC scheme.5

Deployment Cost. Being a software-only security solution, PLCrypto does not require
additional hardware components or firmware updates. Also, we do not need to modify the
communication protocols. We just need to add a line in the original control program to
call a function in PLCrypto with inputs.

8 Benchmark
Benchmark Settings. To show the performance of the cryptographic algorithms in
PLCrypto, we implemented them on a mainstream commercial PLC [Pro18] from Allen
Bradley, which has a controllogix 5571 processor and 2 megabytes (MB) memory. We
benchmarked our algorithms with various parameters for comparison. We measured the
time by averaging the results of 1000 repeated experiments if not specified separately. The
execution time is measured using a built-in GSV (Get System Values) instruction to get
the execution time of a scan cycle, which only contains the function under the test. The
time in the average case and the worst case are reported separately as average/worst.

Correctness Verification. Our implementations are parameterized, so users can select
the parameter settings which fit their applications most. To demonstrate the performance
of our implementation, we chose a few widely-used security parameters (e.g., 64, 128,
256) to instantiate the implementations for benchmarking. We used the test vectors in
the original papers or the reference implementations provided by algorithm inventors to
test the correctness of our implementations (except for the subset sum problem based
primitives, we wrote our own reference program to verify its correctness). When we are

5Note that, as a rule of thumb, before implementing any new protocols or algorithms that comprise
algorithms in PLCrypto, one has to analyze the security of the new implementation based on the principles
in Section 5.3.

Zheng Yang, Zhiting Bao, Chenglu Jin, Zhe Liu and Jianying Zhou 193

Table 4: Runtimes of Important Atomic Operations on 32-bit DINT Variables

Instructions Runtime (µs)
:= 1.17
+,- 1.51
* 2.65
/ 2.99

MOD 3.10
XOR, AND, OR 2.3

** 31.5

testing the performance of PLCrypto, we used the same reference test vectors as mentioned
above.

Performance of Atomic Operations. In Table 4, we show the benchmark results of
some important atomic operations on 32-bit DINT variables on the experimented PLC.
We measure the performance of each operation by averaging over 10,000 executions.

Runtimes of OWF. We implemented Fsss with three input lengths ln ∈ {256, 384, 512}.
Since the performance of Fsss is determined by the number of “1” bit in the input, we
experimented with inputs having ln

2 ones (as the average case) and ln ones (as the
worst case). We benchmarked our two implementation solutions: the “baseline” OWF
implementation as Algorithm 1, and the improved solution (“Imp-IF”) based on hard-
coded If statements. The performance of subset-sum based OWF is shown in Table 5a in
milliseconds (ms).

The subset-sum based OWF is efficient on PLC, which only needs a few milliseconds
for different input lengths. The baseline implementation of the OWF with ln = 256 costs
14.7 ms in the average case and 24.0 ms in the worst case. Clearly, our performance
improvement is around two times. Nevertheless, the results show that Fsss has much better
performance on PLC than on other platforms, e.g., ARM [JYvDZ19].

Regarding Hsss, we first benchmarked the fixed message length version that is imple-
mented based on “Imp-IF”-style Fsss

′, whose performance of Hsss is also shown in Table 5a.
In Figure 5, we show the performance of Hsss with message lengths varying from 0.5
kilobits (Kb) to 8 Kb, representing the commonly used parameters in most applications of
PLC.

Table 5: Runtimes of Fsss, Hsss and Block Biphers

(a) Fsss and Hsss

ln

Evaluation time (ms)
OWF UOWHFBaseline Imp-IF

256 14.7 / 24.0 7.9 / 15.6 3.9 / 7.8
384 30.7 / 51.3 17.6 / 35.0 8.8 / 17.5
512 52.5 / 88.7 31.2 / 62.0 15.6 / 31.0

(b) Block Ciphers

lm/lk
Enc/Dec time (ms)

PRESENT SPECK SIMON
32/64 - 1.6 3.4
64/128 7.1 4.6 7.8
128/128 - 9.5 23.7
128/256 - 10.4 25.8

Runtimes of Chaskey. The performance of Chaskey with different permutation rounds
and message lengths is shown in Figure 6 (a). For lm = 128 and T = 8, the evaluation time
is about 2.7 ms, that is efficient enough to authenticate messages collected from sensors in
almost real-time. Since the computation cost is dominated by the permutation algorithm
πc, it is not surprising that the performance Chaskey with 8-round permutation is 2x faster
than that with 16-round (but the latter provides stronger security). Besides, we show that
the performance of Chaskey with T = 12 rounds (recommended by ISO/IEC 29192-6:2019)

194PLCrypto: A Symmetric Cryptographic Library for Programmable Logic Controllers

0 2 4 6 8
0

110

220

330

440

Message Length (Kb)

R
un

ti
m
e
(m

s)
256/128
384/192
512/256

(a) Average

0 2 4 6 8
0

165

330

495

660

Message Length (Kb)

R
un

ti
m
e
(m

s)

256/128
384/192
512/256

(b) Worst

Figure 5: Runtimes of Hsss with Variable Message Lengths.

is between that of T = 8 and T = 16.

Runtimes of PRESENT. PRESENT supports either 80-bit or 128-bit key, but the
difference between the two ciphers is only the key schedule procedure that can be done
on PC. Hence, the encryption/decryption time on PLC for two different keys is identical.
Through our hard-coding optimization towards PRESENT, it is no longer the slowest
one among the three implemented block ciphers, as opposed to the results in [BSS+13],
regarding software implementations. For example, PRESENT is 8x slower than SPECK
and 5.6x slower than SIMON in [BSS+13], but we reduce the performance gap between
PRESENT and SPECK to be 1.5x on PLC, and it is even faster than SIMON in our
benchmark. Hence, PRESENT seems to be more suitable in the PLC environment. The
encryption/decryption performance of PRESENT (around 7.1 ms) is fast enough for most
CPS applications.

Runtimes of SPECK and SIMON. We benchmarked SPECK and SIMON with some
typical parameters that are multiples of 32 (i.e., the bit-length of DINT) so that no bits in
a DINT variable are wasted. The benchmark results of SPECK and SIMON on PLC are
listed in Table 5b. SPECK and SIMON are also efficient on PLC since their encryption
and decryption algorithms only consist of a few hard-coded rotations and XOR operations,
which are very fast. This is also why we include them in PLCrypto. However, SPECK is
more efficient than SIMON since it requires less shift/rotate and logical operations in each
round, and it has fewer rounds than that of SIMON.

0 2 4 6 8
0

85

170

255

340

Message Length (Kb)

R
un

ti
m
e
(m

s)

T=8
T=12
T=16

(a) Chaskey

0 0.5 1.0 1.5 2.0
0

55

110

165

220

Output Length (Kb)

R
un

ti
m
e
(m

s)

PRESENT-CTR
Chaskey-CTR
SPECK-CTR

(b) PRF/PRG

Figure 6: Runtimes of Chaskey and PRF/PRG.

Zheng Yang, Zhiting Bao, Chenglu Jin, Zhe Liu and Jianying Zhou 195

Runtimes of PRF and PRG. We benchmarked PRF/PRG with three concrete instan-
tiations, PRESENT-CTR, SPECK-CTR, and Chaskey-CTR. For efficiency and security
consideration, we chose the message length to be lm = 64 for PRF and PRG. The message
length of Chaskey is 128 bits. We set the key size of PRF/PRG/Chaskey to be lk = 128 to
meet practical security requirements. The performance of PRESENT-CTR, SPECK-CTR,
and Chaskey-CTR is shown in Figure 6 (b). The performance is efficient and linear in the
size of the generated randomness. To generate 256 bits randomness (e.g., as required in
PoA), the most efficient instantiation Chaskey-CTR roughly needs 8.0 ms.

Runtimes of PHOTON and SPONGENT. The performance of the five most efficient
ciphersuits of PHOTON and SPONGENT is shown in Figure 7 (a) and (b), respectively,
where we use the output length to represent each implemented ciphersuit. In general,
PHOTON is almost 2x faster than SPONGENT on PLC. PHOTON-80 is the fastest version,
but it still needs about 170 ms to hash a 256-bit message and 1s to hash 2 Kb message.
Though PHOTON-256 can provide stronger security (i.e., 128-bit collision-resistance) and
is the third fastest version, it requires a much bigger SCSHRMCS table which roughly
consumes 100 KB of memory (in contrast to the 4 KB required by PHOTON-160). For
storage-constrained PLCs, PHOTON-160 provides a good trade-off between security and
performance. Nevertheless, PHOTON might be used when collision-resistance is necessary
and the task is not very time-critical.

0 2 4 6 8
0

1.4

2.8

4.2

5.6

Message Length (Kb)

R
un

ti
m
e
(s
)

80
128
160
224
256

(a) PHOTON

0 2 4 6 8
0

2.7

5.4

8.1

10.8

Message Length (Kb)

R
un

ti
m
e
(s
)

88
128
160
224
256

(b) SPONGENT

Figure 7: Runtimes of PHOTON and SPONGENT.

Runtimes of PoA. Firstly, we need to instantiate those parameters (i.e., the number
η of sub-chains and the number N of the proofs in a sub-chain) to make all algorithms
executable on PLC. It is not hard to see that the proof replenishment algorithm is more
costly than the proof generation algorithm since it needs to run the whole initialization
procedure at once. Therefore, we need to choose the parameters based on the cost of the
replenishment. We set η = 256, which is the lower bound of the number of sub-chains for
running the OTS. But we adjust the total number of proofs, i.e., N , from 64 to 128 when
we evaluated the proof replenishment algorithm. For proof generation, we experimented
with a longer sub-chain to test its performance bound. The performance of PoA on a PLC
is shown in Figure 8. The proof generation time is below 6 seconds, even if N = 1000,
while, in practice, the interval between two consecutive proof generations can be greater
than 30 seconds [JYvDZ19]. When N = 128, the replenishment time is about 3 minutes.
For these concrete parameters N = 128 and η = 256, a protocol instance has 32768 proofs
that can be used for roughly 11 days. A PLC only needs to run the proof replenishment
algorithm in the idle time every 11 days for 3 minutes before the proofs run out.
Storage Costs of Algorithms. Table 6 summarizes the storage costs of the implemented
algorithms. For simplicity, we present the version of algorithms or the storage costs in

196PLCrypto: A Symmetric Cryptographic Library for Programmable Logic Controllers

0 250 500 750 1000
0

1.4

2.8

4.2

5.6

Sub-chain Length

R
un

ti
m
e
(s
)

(a) Proof generation

0 32 64 96 128
0

40

80

120

160

Sub-chain Length

R
un

ti
m
e
(s
)

(b) Proof replenishment

Figure 8: Runtimes of Proof of Aliveness (PoA).

brackets, e.g., [256 , 384 , 512] stands for three input lengths of OWF. We only list the
storage costs of some typical ciphersuits of algorithms. The storage costs are broken down
into the size of the ST code of an algorithm and the tags that are created on PLC for
executing the algorithms. The storage cost of most of the algorithms is less than 100
KB, which well fits the memory size of a commercial PLC (e.g., 2MB on controllogix
5571 [Pro18]).

Practicality Discussion. Our library is the first-of-the-kind, and we open-source our
codes to encourage others to improve our implementation with respect to its performance
and security. The practically acceptable range of runtime and memory consumption
certainly depends on applications and devices. On the commercial PLC we tested, our
memory consumption (shown in Table 6) is well below the total memory size (2 MB) of the
PLC. The runtime of most of the algorithms in PLCrypto is on the orders of milliseconds.
Usually, PLCs and their monitoring servers do not communicate very often, so PLCrypto
has enough time to compute before sending data to the servers. For example, in a water
treatment system, PLC data is collected once per second [GAJM16]. As another example,
the PLCs controlling train systems report their status every 300 ms [JAYZ21]. Using
Speck 64/128 for encryption and Chaskey with T = 16, one only needs 30 ms to encrypt
and generate a MAC tag for 128-bit data.

Table 6: Storage Cost of Algorithms in PLCrypto

Algorithms Storage (KB)
Code Tag Total

OWF
[256 , 384 , 512]

Original [67.5 , 145.0 , 254.0] [9.1 , 19.6 , 34.2] [76.6 , 164.6 , 288.2]
Imp-IF [267.0 , 575.0 , 993.2] [0.1 , 0.1 , 0.2] [267.1 , 575.1 , 993.4]

UOWHF
[256 , 384 , 512]

Fix [163.0 , 335.0 , 568.0] [0.1 , 0.1 , 0.1] [163.1 , 335.1 , 568.1]
Vary [164.0 , 336.0 , 569.0] [1.1 , 1.1 , 1.2] [165.1 , 337.1 , 570.2]

Chaskey [12.0] [1.2] [13.2]

Block Ciphers
[32 , 64 , 128]

PRESENT [- , 14.3 , -] [- , 0.5 , -] [- , 14.8 , -]
SPECK [4.9 , 11.1 , 16.2] [0.3 , 0.3 , 0.4] [5.2 , 11.4 , 16.6]
SIMON [6.4 , 9.7 , 22.7] [0.3 , 0.4 , 0.6] [6.7 , 10.1 , 23.3]

PRF/PRG
PRESENT-CTR [14.6] [0.8] [15.4]
SPECK-CTR [12.0] [0.7] [12.7]
Chaskey-CTR [17.5] [2.2] [19.7]

PHOTON [80 , 160 , 256] [19.6 , 21.9 , 116] [13.1 , 13.5 , 24.9] [32.7 , 35.4 , 140.9]
SPONGENT [88 , 160 , 256] [23.9 , 23.5 , 27.1] [11.6 , 11.6 , 13.2] [35.5 , 35.1 , 40.3]

PoA Proof Generation [285.0] [83.6] [368.6]
Replenishment [457.0] [93.3] [550.3]

Zheng Yang, Zhiting Bao, Chenglu Jin, Zhe Liu and Jianying Zhou 197

9 Conclusion and Future Work
We implemented an efficient and secure cryptographic library PLCrypto for PLC based on
ST. PLCrypto includes a wide range of symmetric cryptographic algorithms for realizing
essential cryptographic functions (such as OWF, BC, PRF/PRG, MAC, Hash, and PoA).
To use PLCrypto in practice, users can either build the application directly on the main-
task of an algorithm in PLCrypto or copy the routines of cryptographic algorithms from
PLCrypto to a target application.

To further extend this line of research, one can investigate the possibility of side-channel
attacks on PLCrypto and enhance the library with side-channel resistance. Also, one can
extend PLCrypto to include more algorithms, e.g., asymmetric cryptographic algorithms.
We also encourage researchers to propose novel implementation tricks to further improve the
performance of our open-source PLCrypto. Cryptographers are encouraged to develop new
lightweight algorithms that better fit the programming constraints on the PLC platform.
Due to both security and performance considerations, we used hard-coding techniques in
our implementations, but hard-coding techniques also prevent us from frequently updating
secret keys of algorithms in PLCrypto. One possible way to address this would be to have
an authenticated encryption with associated data with hard-coded key, which would be
used for pre-computed round key wrapping; the encrypted round keys can be stored in
tags or memory between cryptographic function calls.

Acknowledgments
We would like to thank our shepherd Nicky Mouha and anonymous reviewers for their
invaluable comments and suggestions. Zhe Liu is supported by the National Key R&D
Program of China (Grant No.2020AAA0107700) and the National Natural Science Foun-
dation of China (Grant No.61802180). Zheng Yang is supported by the Natural Science
Foundation of China (Grant No. 61872051). Partial work of Zheng Yang and Zhiting Bao
was done when they worked at SUTD.

References
[ADM18] Thiago Alves, Rishabh Das, and Thomas Morris. Embedding encryption

and machine learning intrusion prevention systems on programmable logic
controllers. Embedded Systems Letters, 10(3):99–102, 2018.

[Alv20] Thiago Alves. The openplc project, 2020. [Accessed May., 2020].

[AM18] Sridhar Adepu and Aditya Mathur. Assessing the effectiveness of attack
detection at a hackfest on industrial control systems. CoRR, abs/1809.04786,
2018.

[AMY17] Thiago Alves, Thomas Morris, and Seong-Moo Yoo. Securing scada appli-
cations using openplc with end-to-end encryption. In Proceedings of the 3rd
Annual Industrial Control System Security Workshop, pages 1–6, 2017.

[Ass06] American Gas Association. Cryptographic protection of scada communication,
2006. [Accessed May., 2020].

[BKL+07] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe.
PRESENT: an ultra-lightweight block cipher. In CHES, volume 4727 of
Lecture Notes in Computer Science, pages 450–466. Springer, 2007.

198PLCrypto: A Symmetric Cryptographic Library for Programmable Logic Controllers

[BKL+12] Andrey Bogdanov, Miroslav Knezevic, Gregor Leander, Deniz Toz, Kerem
Varici, and Ingrid Verbauwhede. Source codes of spongent. https://sites.
google.com/site/spongenthash/downloads, 2012.

[BKL+13] Andrey Bogdanov, Miroslav Knezevic, Gregor Leander, Deniz Toz, Kerem
Varici, and Ingrid Verbauwhede. SPONGENT: the design space of lightweight
cryptographic hashing. IEEE Trans. Computers, 62(10):2041–2053, 2013.

[Bra09a] Allen Bradley. Logix5000 controllers. 2009.

[Bra09b] Allen Bradley. Logix5000 controllers tasks, programs, and routines. 2009.

[Bra16] Allen Bradley. Memory card usability on logix5000 controllers. 2016.

[Bra18a] Allen Bradley. Logix 5000 controllers general instructions reference manual.
2018.

[Bra18b] Allen Bradley. Logix 5000 controllers structured text. 2018.

[Bra19] Allen Bradley. Cip security with rockwell automation products, 2019. [Accessed
Jun., 2020].

[Bra20] Allen Bradley. Stratix ethernet device specifications. 2020.

[BSS+13] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan
Weeks, and Louis Wingers. The SIMON and SPECK families of lightweight
block ciphers. IACR Cryptology ePrint Archive, 2013:404, 2013.

[CATO17] John Henry Castellanos, Daniele Antonioli, Nils Ole Tippenhauer, and Martín
Ochoa. Legacy-compliant data authentication for industrial control system
traffic. In International Conference on Applied Cryptography and Network
Security, pages 665–685. Springer, 2017.

[CG20] Jean-Sébastien Coron and Agnese Gini. A polynomial-time algorithm for
solving the hidden subset sum problem. IACR Cryptol. ePrint Arch., 2020:461,
2020.

[CHA19] ISO/IEC 29192-6:2019 Information technology âĂŤ Lightweight cryptography
âĂŤ Part 6: Message authentication codes (MACs). ISO/IEC, 2019.

[Dec18] Wolfgang Decker. Top tips for retrofitting legacy equipment, 2018. [Accessed
Jun., 2020].

[Deu17] Deutsche Bank Research. Global PLC market share as of 2017,
by manufacturer. https://www.statista.com/statistics/897201/
global-plc-market-share-by-manufacturer/, 2017. Online; Last accessed
the website in May 2020.

[DG17] Adrian-Vasile Duka and Béla Genge. Implementation of simon and speck
lightweight block ciphers on programmable logic controllers. In 2017 5th
International Symposium on Digital Forensic and Security (ISDFS), pages
1–6. IEEE, 2017.

[DR02] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The Ad-
vanced Encryption Standard. Information Security and Cryptography. Springer,
2002.

https://sites.google.com/site/spongenthash/downloads
https://sites.google.com/site/spongenthash/downloads
https://www.statista.com/statistics/897201/global-plc-market-share-by-manufacturer/
https://www.statista.com/statistics/897201/global-plc-market-share-by-manufacturer/

Zheng Yang, Zhiting Bao, Chenglu Jin, Zhe Liu and Jianying Zhou 199

[DRX17] Srinivas Devadas, Ling Ren, and Hanshen Xiao. On iterative collision search
for LPN and subset sum. In TCC (2), volume 10678 of Lecture Notes in
Computer Science, pages 729–746. Springer, 2017.

[EB07] John Kelsey Elaine Barker. Recommendation for Random Number Genera-
tion Using Deterministic Random Bit Generators (Revised). NIST Special
Publication, 2007.

[FMC11] Nicolas Falliere, Liam O Murchu, and Eric Chien. W32. stuxnet dossier. White
paper, Symantec Corp., Security Response, 5(6):29, 2011.

[GAJM16] Jonathan Goh, Sridhar Adepu, Khurum Nazir Junejo, and Aditya Mathur. A
dataset to support research in the design of secure water treatment systems.
In International Conference on Critical Information Infrastructures Security,
pages 88–99. Springer, 2016.

[GPP11] Jian Guo, Thomas Peyrin, and Axel Poschmann. The PHOTON family of
lightweight hash functions. In CRYPTO, volume 6841 of Lecture Notes in
Computer Science, pages 222–239. Springer, 2011.

[IN96] Russell Impagliazzo and Moni Naor. Efficient cryptographic schemes provably
as secure as subset sum. J. Cryptology, 9(4):199–216, 1996.

[JAYZ21] Edwin Franco Myloth Josephlal, Sridhar Adepu, Zheng Yang, and Jianying
Zhou. Enabling isolation and recovery in plc redundancy framework of metro
train systems. International Journal of Information Security, Jan 2021.

[JG16] Axel Poschmann Jian Guo, Thomas Peyrin. Photon is a very lightweight
family of hash functions (part of iso/iec 29192-5:2016). 2016.

[JG19] Axel Poschmann Jian Guo, Thomas Peyrin. Source codes of photon. https:
//sites.google.com/site/photonhashfunction, 2019.

[JT13] Karl-Heinz John and Michael Tiegelkamp. IEC 61131-3: Programming Indus-
trial Automation Systems. Springer Berlin Heidelberg, 2013.

[JVvD18] Chenglu Jin, Saeed Valizadeh, and Marten van Dijk. Snapshotter: Lightweight
intrusion detection and prevention system for industrial control systems. In
2018 IEEE Industrial Cyber-Physical Systems, pages 824–829. IEEE, 2018.

[JYAZ19] Chenglu Jin, Zheng Yang, Sridhar Adepu, and Jianying Zhou. Hmake: Legacy-
compliant multi-factor authenticated key exchange from historical data. IACR
Cryptology ePrint Archive, 2019:450, 2019.

[JYvDZ19] Chenglu Jin, Zheng Yang, Marten van Dijk, and Jianying Zhou. Proof of
aliveness. In ACSAC, pages 1–16. ACM, 2019.

[Lam79] Leslie Lamport. Constructing digital signatures from a one-way function.
Technical report, Technical Report CSL-98, SRI International Palo Alto, 1979.

[Mir18] Miracl cryptographic library, 2018.

[MMH+14] Nicky Mouha, Bart Mennink, Anthony Van Herrewege, Dai Watanabe, Bart
Preneel, and Ingrid Verbauwhede. Chaskey: An efficient MAC algorithm for
32-bit microcontrollers. In Selected Areas in Cryptography, volume 8781 of
Lecture Notes in Computer Science, pages 306–323. Springer, 2014.

[MvOV96] Alfred Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of
Applied Cryptography. CRC Press, 1996.

https://sites.google.com/site/photonhashfunction
https://sites.google.com/site/photonhashfunction

200PLCrypto: A Symmetric Cryptographic Library for Programmable Logic Controllers

[MVOV18] Alfred J Menezes, Paul C Van Oorschot, and Scott A Vanstone. Handbook of
applied cryptography. CRC press, 2018.

[NAI17] Naoki Nishikawa, Hideharu Amano, and Keisuke Iwai. Implementation of
bitsliced AES encryption on cuda-enabled GPU. In NSS, volume 10394 of
Lecture Notes in Computer Science, pages 273–287. Springer, 2017.

[NY89] Moni Naor and Moti Yung. Universal one-way hash functions and their
cryptographic applications. In STOC, pages 33–43. ACM, 1989.

[ODV19] ODVA. Cip security, 2019. [Accessed Jun., 2020].

[PRE19] ISO/IEC 29192-2:2019 Information security - Lightweight cryptography - Part
2: Block ciphers. ISO/IEC, 2019.

[Pro18] NHP Electrical Engineering Products. Catalogue no: 1756-l71. Technical
report, 1756L71 Datasheet, 2018.

[RBB00] Vincent Rijmen, Antoon Bosselaers, and Paulo Barreto. Optimised Rijndael
implementation. https://archive.org/details/rijndael-fst-3.0, 2000.

[Roc20] Rockwell Automation. Programmable Controllers. https://ab.
rockwellautomation.com/Programmable-Controllers, 2020. Online; Last
accessed the website in May 2020.

[RSD06] Chester Rebeiro, A. David Selvakumar, and A. S. L. Devi. Bitslice implemen-
tation of AES. In CANS, volume 4301 of Lecture Notes in Computer Science,
pages 203–212. Springer, 2006.

[SHB09] Emily Stark, Michael Hamburg, and Dan Boneh. Symmetric cryptography in
javascript. In ACSAC, pages 373–381. IEEE Computer Society, 2009.

[SPE18] ISO/IEC 29167-21:2018 Information technology âĂŤ Automatic identification
and data capture techniques âĂŤ Part 21: Crypto suite SIMON security
services for air interface communications. ISO/IEC, 2018.

[SPLI06] JunHyuk Song, Radha Poovendran, Jicheol Lee, and Tetsu Iwata. The ad-
vanced encryption standard-cipher-based message authentication code-pseudo-
random function-128 (AES-CMAC-PRF-128) algorithm for the internet key
exchange protocol (IKE). RFC, 4615:1–7, 2006.

[SPW06] Ron Steinfeld, Josef Pieprzyk, and Huaxiong Wang. Higher order universal
one-way hash functions from the subset sum assumption. In Public Key
Cryptography, volume 3958 of Lecture Notes in Computer Science, pages
157–173. Springer, 2006.

[Sta16] Morgan Stanley. The internet of things and the new industrial revolution,
2016. [Accessed Jun., 2020].

[YH20] Eric A. Young and Tim J. Hudson. The openssl project, 2020. [Accessed May.,
2020].

A Other Preliminaries
A.1 Chaskey
Here we review the first algorithm of Chaskey [MMH+14, Algorithm 3] that is the most
efficient one for PLC. Chaskey consists the following two algorithms:

https://archive.org/details/rijndael-fst-3.0
https://ab.rockwellautomation.com/Programmable-Controllers
https://ab.rockwellautomation.com/Programmable-Controllers

Zheng Yang, Zhiting Bao, Chenglu Jin, Zhe Liu and Jianying Zhou 201

• Key Generation: This algorithm first randomly samples lk-bit key k
$← {0, 1}lk . Then it

would derive two new sub-keys K1 and K2 from k for MAC evaluation. If k[lk − 1] = 0
then K1 := (K � 1)⊕ 0lk , else K1 := (k � 1)⊕ 0lk−810000111. And if K1[lk − 1] = 0
then K2 := (K1 � 1)⊕ 0lk , else it sets K2 := (K1 � 1)⊕ 0lk−810000111. Finally, this
algorithm returns key K = (k||K1||K2). Chaskey [MMH+14, Algorithm 3] is designed
with 128-bit concrete security, so we will use lk = 128 accordingly in the sequel.
• Evaluation: We denote this algorithm by Chaskey(K,m) which takes as input a key
K = (k||K1||K2) and a message m ∈ {0, 1}lm , and outputs a MAC value τ ∈ {0, 1}lk .
The evaluation procedure will leverage on a permutation πc which is defined later. Based
on πc, the evaluation algorithm first splits the input message m into ` blocks m0, m1, . . . ,
m`−1 of lk-bit each. It then initializes ST1 := k and computes STi+1 := πc(STi⊕mi) for
i ∈ [`− 1]. As for the last block of m, if |m`−1| = lk, then it sets L := K1, otherwise its
sets L := K2 and m`−1 := m`−1||10lk−|m`−1|−1 (for padding). Eventually, it computes
ST` := πc(ST`−1 ⊕m`−1 ⊕ L)⊕ L. The MAC value τ is the t least significant bits of
ST`.
The permutation function πc used above πc consists of T ∈ {8, 16} rounds, where
16-round is recommended for long-term security. Each round runs the following steps
based on four 32-bit input variables v0, v1, v2, and v2:
– v0

′ := ((v1 + v2) ≪ 16) + ((v3 ≪ 8)⊕ (v3 + v2));
– v1

′ := (((v1 ≪ 5)⊕ (v1 + v0)) ≪ 7)⊕ ((v3 + v2) + ((v1 ≪ 5)⊕ (v1 + v0)));
– v2

′ := (((v3 + v2) + ((v1 ≪ 5)⊕ (v1 + v0))) ≪ 16);
– v3

′ := (((v1 + v0) ≪ 16) + (v3 ≪ 8))⊕ (v3 + v2)⊕ ((v3 ≪ 8)⊕ (v3 + v2) ≪ 13).

A.2 Block Ciphers
In this section, we review three lightweight block cipher families that are implemented in
PLCrypto.

A.2.1 PRESENT

We review the algorithms of PRESENT as follows:
• Key Generation: This algorithm first randomly samples a key k $← {0, 1}lk that shall
be loaded into the key register for generating the subsequent encryption keys used
in each round. Each round encryption key is the left-most 64-bit of the current key
register which will be updated by a key scheduling procedure to generate the next round
encryption key. The key schedule depends on the key length lk. The main idea of the
key scheduling is to rotating left the key register with 61 bits, partial bits the of the
key register are passed through the SBOX (e.g., the left-most four bits for 80-bit key),
and the round counter value i is exclusive-ored with the corresponding bits of the key
register. The detailed key scheduling procedure is detailed in [BKL+07]. This algorithm
will generate 32 round encryption keys k0, . . . ,KT−1 where T = 32.
• Encryption: We denote this algorithm by PRESENTenc(K,m) which takes as input
an encryption key K = (k0|| . . . ||kT−1) and a 64-bit message m, and outputs a 64-bit
block ciphertext C. The encryption algorithm has 31-SP rounds, and each round runs
three procedures: AddRoundKey, SBOXLayer, and PBOXLayer, which are executed
one after the other. AddRoundKey takes as input the 64-bit round state St and
the round encryption key ki, and outputs the updated state St that is computed
as St[i] := St[i] ⊕ ki for 0 ≤ i ≤ 63, where the initial round state is the message.
For SBOXLayer, the input state St is represented as sixteen 4-bit words w15, . . . , w0
where wi = St[4i + 3]||St[4i + 3]||St[4i + 3]||St[4i + 3] for 0 ≤ i ≤ 15 and the output
nibble SBOX[wi] yields the updated words of St. PBOXLayer is a bit permutation
procedure that moves the i-th bit of the input state St into bit position specified

202PLCrypto: A Symmetric Cryptographic Library for Programmable Logic Controllers

by PBOX(St[i]). After the SP rounds, the encryption algorithm runs an additional
AddRoundKey procedure with key kT to obtain the final ciphertext C.
• Decryption: We denote this algorithm by PRESENTdec(K ′, C) which takes as input the
encryption key K = (kT−1|| . . . ||k0) and a 64-bit ciphertext C, and outputs message
m. The decryption algorithm is a reverse execution of encryption algorithm. That is,
it runs 31 times AddRoundKey, PBOXLayer−1 and SBOXLayer−1, and one additional
AddRoundKey procedure, where PBOXLayer−1 and SBOXLayer−1 are inverse of the
permutation box and sub-situation box, respectively.

A.2.2 SPECK

We let le be the bit-length of a word used by them, where le could be 16, 24, 32, 48,
and 64. So each block of message has a bit-length lm = 2le. Both SPECK and SIMON
have encryption key of lw-word, i.e., lk = lelw bits, lw ∈ {2, 3, 4}. We shall denote a
concrete ciphersuit Ξ ∈ {SIMON,SPECK} as Ξ-lm/lk. In the following, we review them
respectively.

The parameters of SPECK include two right operands of rotation operations, denoted
by α and β, which are constants determined by the parameter le. Specifically, if le = 16
(32-bit block) then we set α := 7 and β := 2; otherwise we have α := 8 and β := 3. In the
following, we review algorithms of SPECK.
• Key Generation: This algorithm first randomly samples a key k $← {0, 1}lk , which is
divided into words as k = (k0, k

′
0, . . . , k

′
lw−2). Next, this algorithm expand the key

k to generate additional keys (k0, . . . , kT−1) that shall be used later in the T rounds
encryption procedure, where T ∈ {22, 23, 26, 27, 28, 32, 33, 34} is determined by le and
lw (see more details in [BSS+13, Figure 4.4]). Specifically, for i ∈ [T − 1], it generates
keys as k′i+lw−1 := (ki + (k′i ≫ α))⊕ i and ki+1 := (ki ≪ β)⊕ k′i+lw−1. Finally, this
algorithm returns key K = (k0|| . . . ||kT−1).

• Encryption: We denote this algorithm by SPECKenc(K,m) which takes as input an
encryption key K = (k0|| . . . ||kT−1) and a 2le-bit message m = (m0||m1) (that is
divided into two equal length sub-messages), and outputs a 2le-bit block ciphertext
C = (c0||c1). Each round of encryption carries out a round function RFk(x, y) = ((x≫
α) + y) ⊕ k, (y ≪ β) ⊕ (x ≫ α) + y) ⊕ k). The entire encryption procedure is the
composition RFkT−1 ◦RFkT−2 ◦ . . . ◦RFk0 , where in the initial round x = m1 and y = m0,
and in final round c1 = x and c0 = y.

• Decryption: We denote this algorithm by SPECKdec(K ′, C) which takes as input the
encryption key K ′ = (kT−1|| . . . ||k0) and a 2le-bit ciphertext C = (c0||c1), and outputs
message m = (m0||m1). The decryption algorithm mainly leverages on an inverse of
round function (used in the encryption), i.e., RF−1

k (x, y) = ((x⊕k)− ((x⊕ y) ≫ β)) ≪
α, ((x⊕ y) ≫ β), the rounds keys are used in a reverse order for decryption.

A.2.3 SIMON

It has the same message, key, and ciphertext spaces as SPECK. It consists the following
three algorithms.
• Key Generation: This algorithm first randomly samples a encryption key k $← {0, 1}lelw ,
which is divided into words as k = (k0, . . . , klw−1). Next, this algorithm expands the
encryption key k to generate additional round keys (klw , . . . , kT−1) that shall be used later
in the T ∈ {32, 36, 42, 44, 52, 54, 68, 69, 72} rounds encryption procedure. Specifically, for
i ∈ [lw, . . . , T − 1], it runs the following steps to obtain the expansion: i) If lw = 5 then
tmp = ki−1 ≫ 3)⊕ki−3; ii) tmp = tmp⊕(tmp≫ 1); iv) ki =∼ ki−lw⊕tmp⊕zj [(i−lw)
mod 62]⊕ 3, where z is a 62-bit constant (determined by T) and z[j] is the j-th bit of z.
Finally, this algorithm returns key K = (k0|| . . . ||kT−1).

Zheng Yang, Zhiting Bao, Chenglu Jin, Zhe Liu and Jianying Zhou 203

• Encryption: We denote this algorithm by SIMONenc(K,m) which takes as input a key
K = (k0|| . . . ||kT−1) and a 2le-bit message m = (m0||m1) (that is divided into two equal
length sub-messages), and outputs a 2le-bit block ciphertext C = (c0||c1). Each round
of encryption encompasses a two-stage Feistel map RFk(x, y) = (y ⊕ f(x)⊕ k, x) where
f(x) = (x≪ 1) & (x≪ 8))⊕ (x≪ 2).

• Decryption: We denote this algorithm by SIMONdec(K ′, C) which takes as input the
encryption key K ′ = (kT−1|| . . . ||k0) and a 2le-bit ciphertext C = (c0||c1), and outputs
message m = (m0||m1). This algorithm leverage a round function RF−1

k (x, y) = (y, x⊕
f(y)⊕ k) for decryption.

A.3 Collision-resistant Hash Functions PHOTON and SPONGENT

In this section, we briefly describe two collision-resistant hash function families, PHOTON
and SPONGENT, that standardized by ISO/IEC [JG16].

A.3.1 PHOTON

Here we review the two algorithms of PHOTON:
• Initialization: This algorithm initializes the constants and parameters that shall be used
by during the hash evaluation (including the ones used by πp). If first sets the initial
vector IV and the first internal state S0 as S0 = IV := 0lt−24|| lh4 ||lr||lr′ . It generates T
round constants {RC[i]}i∈[T] by a 4-bit linear feedback shift register with maximum cycle
length, where each RC[i] has ls-bit. And it initializes ld internal constants {IC[i]}i∈[ls]
by shift registers with a cycle length of ld, where each IC[i] has ls-bit. Besides, it also
initializes a ld× ld matrix B̄ satisfying that B̄ld is a Maximum Distance Separable (MDS)
matrix [DR02]. More details about those constants can be found in [GPP11, Appendix
D] and [GPP11, Table 1].

• Evaluation: We denote this algorithm by PHOTON(m) which takes as input a message
m ∈ {0, 1}lm and outputs a hash value z ∈ {0, 1}lh . m is first divided into ` blocks
m0 . . .m`−1 of lr bits each, where ` is determined by |m|. The last block may be
padded with a “1” bit along with many zeros (if necessary). The evaluation executes
absorbing and squeezing procedures. In the absorbing phase, for i ∈ [`], it computes the
i+ 1-th internal state as Si+1 := πp(Si⊕ (mi||0lc)). Once all ` message blocks have been
absorbed, it computes S`+i+1 := πp(S`+i) for i ∈ [`′], in the squeezing phase. Eventually,
hash output is built by concatenating the successive lr′-bit output blocks z0, . . . , z`′−1
until it gets appropriate output size lh, where zi is the lr′ left-most bits of internal state
S`+i.
Now we briefly review the permutation πp. It would first divide the lt-bit input into a

ld× ld-matrix C̄, where each cell of such a matrix has ls-bit. That is, we have lt = ld · ld · ls.
In the following, we uses C̄[i, j] (for i, j ∈ [ld]) to access the cell at the i-th row and j-th
column.

The πp has T = 12 rounds, and each round would run four procedures: AddConstant,
SubCell, ShiftRows, and MixColumnsSerial. AddConstant computes C̄[i, 0] := C̄[i, 0] ⊕
RC[v]⊕ IC[i]. SubCell applies the ls-bit SBOX to substitute every cell of C̄. For i, j ∈ [ld],
it computes C̄[i, j] := SBOX(C̄[i, j]). If ls = 4, then it uses PRESENT’s SBOX [BKL+07],
otherwise it uses the AES’s SBOX [DR02]. For j ∈ [ld], ShiftRows computes for i ∈
[1, . . . , ld − 1]. In MixColumnsSerial, it computes (C̄[0, j], . . . , C̄[ld − 1, j])T = B̄ld ×
(C̄′[0, j], . . . , C̄′[ld − 1, j])T for j ∈ [ld], where the superscript T denote the transformation
of a matrix, and (C̄[0, j], . . . , C̄[ld − 1, j])T is all cells in the j-th column of matrix C̄. The
final result of πp is updated matrix C̄.

204PLCrypto: A Symmetric Cryptographic Library for Programmable Logic Controllers

A.3.2 SPONGENT

We review the SPONGENT construction via the following algorithms:
• Initialization: This algorithm randomly generates a 8-bit SBOX as in the state-of-the-
art (C++) reference implementation of SPONGENT [BKL+12]. It also initializes the
parameters including the rate lr of bits of input or output handled in the permutation
procedure, the capacity lc of bits of internal state, and the hash output length lh in bits.
These parameters can uniquely determined a specific version of SPONGENT.
• Evaluation: We denote this algorithm by SPONGENT(m) which takes as input a message
m ∈ {0, 1}lm and outputs a hash value z ∈ {0, 1}lh . This algorithm first pads input
message m with the same approach of PHOTON, and divides m into lr-bit blocks
(m1,m2, . . . ,m`), where ` = |m|

lr
. SPONGENT(m) encompasses two phases: Absorbing

and Squeezing . In Absorbing phase, each lr-bit message block is xored into the first lr
bits of the state and each resultant state is updated by the permutation function πs.
Squeezing phase is used to generate the hash value, which would iteratively get the first
lr bits of the state and apply the permutation function πs to update the state, until lh
bits are obtained.
The core permutation function πs operates over the state St with size lg = lr + lc in

T -rounds, where T ∈ {45, 70, 90, 120, 140} that corresponds to the parameters lh/lc/lr. For
i ∈ [T], πs runs three procedures: St := VI(i)⊕ St⊕ IV(i), SLayer, and PLayer, to update
the state. IV(i) is the state of an linear feedback shift register (LFSR) in round i, which
outputs the round dependent constant and is xored to the right-most bits of state. VI(i) is
the bits of IV(i) represented in reversed order, which is xored to the left-most bits of state.
The initial values of IV(i) can be found in [BKL+13, Table 2]. The SLayer procedure is
identical to that of PRESENT. PLayer moves the j-th bit of St to new position sPBOX(j),
where PBOX(j) returns j · lg/4 mod lg if j ∈ [lg − 1] and lg − 1 otherwise.

A.4 Proof of Aliveness
A proof of aliveness (PoA) scheme is a two-party protocol in which a client idC proves its
aliveness at a certain time to a server idS. We represent the time elapse via a discrete-time
slots {Ti}, and any two of them has a time interval ∆s, i.e., Ti+1 − Ti = ∆s. Let ∆rc

denote the life-span of a PoA protocol instance, and Tatt be the aliveness tolerance time.
Basically, if the server idS fails to receive any valid proof from the client idC within Tatt,
then idC is considered to be dead.

Here we review the second protocol ΠPRG
OWF proposed in [JYvDZ19] and implemented on

PLC. We briefly review the protocol execution phases of ΠPRG
OWF as below:

• Initialization: The life-span ∆rc of the protocol is first divided into η time periods,
and each period has a length ∆′rc = b∆rc

η c. In the i-th (i ∈ [η]) time period, idC runs
ssi||pi0 := PRG(ssi−1) to get the corresponding initial secret pi0 of the i-th sub-chain and
the PRG seed ssi, It generates the i-th verify-point piN (for verifying the aliveness proofs
in the corresponding chain) by computing N -times of the OWF F. Namely, each node pij
in this chain is computed from its predecessor pij−1 and the OWF F, i.e., pij := F(pij−1).
At the end, the client would keep the state (ssu, p1

0, {T iend}0≤i≤η, η, u), where u is a
variable initialized to be 1 to track the index of the stored PRG seed and the OWF-chain
head. And the server has state ({piN , T iend}i∈[η], Tack, η), where Tack is the latest time
that the verifier received a valid aliveness proof.

• Proof Generation: To get a proof for time T , the client idC should first figure out the
index i of the OWF-chain that should be used, which is determined by the current time.
Then, idC gets the i-th OWF-chain head based on the current stored PRG seed ssi by
literally running u := u+ 1 and ssu||pu0 := G.Gen(ssu−1) until u = i. Then, idC gets the
number M of OWF that needs to be computed as M := Tu

end−T
∆s

. For i ∈ [M], idC runs

Zheng Yang, Zhiting Bao, Chenglu Jin, Zhe Liu and Jianying Zhou 205

pi := F(pi−1). After this, idC sets pT := pM which is returned as the aliveness proof for
time T .

• Proof Verification: Upon receiving a proof p = pT , the server idS verifies it by checking
whether T −Tack < Tatt, and the current verify-point puj can be computed from pT . That
is, idS first obtains Z := T−Tver

∆s
(i.e., the number of OWF evaluations for verification),

and sets p′0 := pT . For i ∈ [Z], idS computes p′i := F(p′i−1). If pZ = puj then pT is valid.
If T − Tack > Tatt and the pT is valid, idS sets the verify-point by setting puj := pT and
Tack := T .

Proof Replenishment. Another necessity of PoA is the proof replenishment feature, which is
used to reinitialize the protocol instance when the proof is about to use out. In [JYvDZ19],
Jin et al. proposed to use a one-time signature scheme (OTS) to achieve this feature,
in which the signing key of OTS is the OWF-chain heads of the sub-chains. To re-
plenish the proofs, the prover can initialize a new protocol instance to get the state
({pi,newN , T i,newend }i∈[η], T

new
ack , η), and then sign it based on the OWF-heads of the last pro-

tocol instance. The OTS instance used in [JYvDZ19] is the first OTS introduced by
Lamport [Lam79], which is based on OWF. The signing key of Lamport OTS consists of
256 OWF keys, and signing procedure is to select 128 OWF keys from the signing key
according to the bits of the signed message.

A.5 Big-integer Operations
Most of the modern cryptographic algorithms rely on big-integer operations (over 128 bits).
But they are not directly supported by PLCs. In this work, we are going to benchmark
the standard big-integer operations, such as multiple-precision addition, subtraction,
multiplication, and division (modulo), and binary multiplication in an additive group, that
are runnable on PLC (i.e., it can be finished within a scan cycle of PLC)6. Here we leverage
on the most common radix representation approach to represent a big-integer. That is,
the representation of a positive integer a is represented as a sum of multiples of powers
of a base b, i.e., a = ala−1b

la−1 + ala−2b
la−2 + . . . + a1b + a0, where the integers ai (for

i ∈ [la]) are called digits. And b = 2lb . In the following, we review the classic big-integer
algorithms (as reference) introduced in [MvOV96].
• Multiple-precision Addition [MvOV96, Algorithm 14.7]: We denote this algorithm by

Add(x, y) which takes as input positive integers x and y which are represented as la
digits, and outputs the sum w = x+ y = (wla . . . w0)b. This algorithm first initializes
carry c := 0. For i ∈ [la], it computes the result of each digit as wi := (xi + yi + c)
mod b; if wi > b, it sets c := 1, and c := 0 otherwise. The digit wla is assigned to be the
last carry bit.

• Multiple-precision Subtraction [MvOV96, Algorithm 14.9]: We denote this algorithm
by Sub(x, y) which takes as input positive integers x and y represented in la-digit, and
outputs the difference w = x− y = (wla−1 . . . w0)b. It first initializes carry c := 0. Next,
for i ∈ [la], it computes wi := (xi − yi + c) mod b; If (xi − yi + c) ≥ 0, then it sets
c := 0, and c := −1 otherwise.

• Multiple-precision Multiplication [MvOV96, Algorithm 14.12]: We denote this algorithm
by Mul(x, y) which takes as input la-digit multiplier x and ly-digit multiplicand y, and
outputs product w = x · y = (wla+ly−1 . . . w0)b. First, it initializes w := 0. For i ∈ [ly],
it runs c := 0, then for j ∈ [la], it computes (uv)b := wi+j + xjyi + c, sets wi+j := v and
c := u, where u and v are base b digits and u may be 0. Then, it sets wi+la := u.

• Multiple-precision Division [MvOV96, Algorithm 14.20]: We denote this algorithm by
Div(x, y) which takes as input positive integer la-digit dividend x and divisor ly-digit y,
and outputs (la − ly + 1)-digit quotient q = x/y = (qla−ly . . . q0)b and ly-digit remainder

6Our benchmark results imply that some other expensive operations (like modular exponentiation)
cannot be done within a scan cycle of PLC.

206PLCrypto: A Symmetric Cryptographic Library for Programmable Logic Controllers

r = (rly−1 . . . r0)b, where la ≥ ly ≥ 1, and y 6= 0. The algorithm does the following
steps:
– While x ≥ ybla−ly , it computes qla−ly := qla−ly + 1 and x := x− ybla−ly ;
– For i ∈ [la − 1, . . . , ly], it runs the following steps: If xi = yly−1, then it sets
qi−ly := b − 1, else it sets qi−ly := b(xib + xi−1)/yly−1)c; While qi−ly (yly−1b +
yly−2) > xib

2 + xi−1b+ xi−2, it computes qi−ly := qi−ly − 1; x := x− qi−lyybi−ly ;
If x < 0 then it sets x := x+ ybi−ly and qi−ly := qi−ly − 1;

– Eventually, the quotient q has been calculated, and the reminder is r := x.
Note that the division operation can also be used as a modular operation, in which case
only the reminder r is returned.

• Multiplication in an Additive Group [MvOV96, Algorithm 14.92]: We denote this
algorithm by AMul(e, g) which takes as input two la-digit integers e and g in additive
group Zm, and outputs the product in Zm, i.e., w = e · g (mod m) = (wla+ly−1 . . . w0)b.
AMul first initializes the product w := 0. For i ∈ [la − 1, . . . , 0]: it computes w =
Add(w,w), and w = Add(w, g) if the i-th bit of e is 1.

B Remarks on Extending the Life-span of PoA Instances
To improve password replenishment, it is possible to leverage external storage, such as
an SD card that is supported by PLC [Bra16], so that we could compute each new tail
node at the idle time of PLC and store it at the SD card. The time to compute a tail
node is identical to the worst-case time to generate a password in the proof generation
procedure. As we assume that the PLC is running in RUN mode, these tail nodes cannot
be tampered by adversaries. The compression of tail nodes based on UOWHF could
also be done at the idle time as well, which costs about 1s. For the online OTS signing
procedure, it only needs to read tails and the corresponding hash value from SD, and run
the PRG to generate the OWF-chain heads accordingly, that roughly costs 6s. In this way,
the PoA instance could use a much longer sub-chain, so that the interval between two
replenishment procedures can be longer as well. For example, an POA instance can be
used for 91 days when N = 1024. To facilitate the proof generation algorithm, one could
also store checkpoints in sub-chains in the SD card. Nevertheless, it is an open question
to figure out the optimal implementation strategy for PoA on PLC with external storage
devices.

C Other Pseudo-codes
C.1 Pseudo-codes of Chaskey
The MAC evaluation function Chaskey(m) is shown by Algorithm 5. The input message
m ∈ {0, 1}lm is represented as a DINT ARRAY m[` ∗ DNk], where ` ∗ DNk = 128

32 for
128-bit security. We define a DINT ARRAY K[3DNk] to store the key K = k||K1||K2. To
hard-code the key, the first step of Chaskey is to assign {K[i]}i∈[3DNk] with corresponding
concrete value of k||K1||K2 generated by Python.

We implement the permutation πc (with T ∈ {8, 16} rounds) on PLC via the Algo-
rithm 5.

C.2 Pseudo-code of SPECK
The encryption function SPECKenc(m) of SPECK would first divide the input message
into two words each of which has length le. In the implementation, we consider a word
length le ∈ {16, 32, 64}. SPECKenc(m) is realized by Algorithm 6.

Zheng Yang, Zhiting Bao, Chenglu Jin, Zhe Liu and Jianying Zhou 207

Algorithm 4: Evaluation of Chaskey
Input: DINT ARRAY m[` ∗DNk] where DNk = 4 (for 128-bit).
Output: DINT ARRAY τ [DNk].
1: Assign hard-coded keys k||K1||K2 to {K[i]}i∈[3DNk];
2: {ST[i]}i∈[DNk] := {k[i]}i∈[DNk]; // Init ST

// Absorb message blocks and permute them
3: for j := 0 to `− 1 by 1 do
4: Absorb the j-th message block m[j ∗DNk + i] into ST[i]

for i ∈ [DNk], i.e., ST[i] := ST[i] XOR m[j ∗DNk + i];
5: {ST[i]}i∈[DNk] := πc({ST[i]}i∈[DNk]);
6: end for
7: If the last message block is not 128-bit, pad the last message block,

and set {L[DNk]}i∈[DNk] := K2[DNk]i∈[DNk]; Otherwise
{L[DNk]}i∈[DNk] := K1[DNk]i∈[DNk];

8: Absorb the last message block into {ST[i]}i∈[DNk] as above;
//Squeeze the state to generate the MAC tags

9: {ST[i]}i∈[DNk] := πc({ST[i]}i∈[DNk]);
10: τ [i] := ST[i] XOR L[i] for i ∈ [DNk];

Clear {K[i]}i∈[3DNk];
11: return {τ [i]}i∈[DNk];

Algorithm 5: Permutation πc of Chaskey
Input: DINT ARRAY v[4], internal state.
Output: DINT ARRAY v[4].
1: for i := 0 to T − 1 by 1 do
2: v′[0] := ((v[1]+̂v[2])≪̂16)+̂(v[3]≪̂8) XOR (v[2]+̂v[3]);
3: v′[1] := (((v[1]≪̂5) XOR (v[1]+̂v[0]))≪̂7) XOR ((v[3]+̂v[2])+̂((v[1]≪̂5) XOR

(v[1]+̂v[0])));
4: v′[2] := (((v[3]+̂v[2])+̂((v[1]≪̂5) XOR (v[1]+̂v[0])))≪̂16);
5: v′[3] := (((v[1]+̂v[0])≪̂16)+̂(v[3]≪̂8)) XOR (v[3]+̂v[2]) XOR (v[3]≪̂8) XOR

(v[3]+̂v[2])≪̂13);
6: {v[i]}i∈[4] := {v′[i]}i∈[4];
7: end for
8: return {v[i]}i∈[4];

208PLCrypto: A Symmetric Cryptographic Library for Programmable Logic Controllers

Algorithm 6: Encryption of SPECK
Input: DINT ARRAY m[2], each storing le-bit message.
Output: DINT ARRAY c[2] storing ciphertext.
1: Assign the hard-coded k0|| . . . ||kT−1 to KEY array {K[i]}i∈[T];
2: c[0] := m[0]; c[1] := m[1];
3: α := 8; β := 3;
4: if le = 16 then
5: α := 7; β := 2;
6: end if
7: for i := 0 to T − 1 by 1 do
8: c[1] := ((c[1]≫̂α)+̂c[0]) XOR K[i];
9: c[0] := (c[0]≪̂β) XOR c[1];
10: end for
11: Clear {K[i]}i∈[T];
12: return {c[i]}i∈[2];

C.3 Pseudo-code of SIMON

The implementation of SIMON is similar to that of SPECK, which mainly relies on our
hard-coded shift/rotate function. Algorithm 7 shows the pseudo-code of SIMONenc(m).

Algorithm 7: Encryption of SIMON
Input: DINT ARRAY m[2], each storing le-bit message.
Output: DINT ARRAY c[2].
1: Assign the hard-coded k0|| . . . ||kT−1 to KEY array {K[i]}i∈[T];
2: c[0] := m[1]; c[1] := m[0];
3: for i := 0 to T − 1 by 1 do
4: tmp := c0;
5: c[0] := c[1] XOR ((c[0]≪̂1) AND (c[0]≪̂8))

XOR (c[0]≪̂2) XOR K[i];
6: c[1] := tmp;
7: end for
8: Clear {K[i]}i∈[T];
9: return {c[i]}i∈[2];

C.4 Pseudo-code of PRF and PRG

Algorithm 8 shows the evaluation function of PRF/PRG on PLC. One could adjust the
output length through the parameter lr to obtain the specific functionality of either PRF
or PRG. Concerning PRF, we assume that the input message x could be any value, and
the output is just two ciphertext values, i.e., DNr = 1. As for PRG, we assume that
the input message x should be counter values in which the first message x[0] is used to
differentiate two PRG evaluations. We shall control the second one x[1] incrementally to
generate the long enough random numbers (determined by lr). As the implementation of
other algorithms, we do the initialization of both kinds of schemes on PC with Python,
i.e., sampling random keys for them. Let Enc ∈ {PRESENTenc,SPECKenc} be one of the
encryption schemes.

Zheng Yang, Zhiting Bao, Chenglu Jin, Zhe Liu and Jianying Zhou 209

Algorithm 8: Evaluation of PRF and PRG
Input: DINT ARRAY x[2].
Output: DINT ARRAY R[DNr], where DNr = lr

2|CIPHERTEXT| .
1: Assign round encryption keys k0|| . . . ||kT−1 to KEY array {K[i]}i∈[T];
2: for i := 0 to DNr − 1 by 2 do
3: {R[i+ j]}j∈[2] := Enc({x[j]}j∈[2]);
4: x[1] := x[1] + 1;
5: end for
6: Clear {K[i]}i∈[T];
7: return {R[i]}i∈[DNr];

C.5 Pseudo-codes of PHOTON
PHOTON mainly leverages on a sponge-like construction (adopted by AES) as internal
unkeyed permutation denoted by πp which deals with lt = lc + lr-bit input and has T = 12
rounds, where lc is the capacity (security parameter) and lr is the bit-length (bitrate) of
a message block. The input message m ∈ {0, 1}lm of PHOTON will be divided into `
message blocks for hash evaluation, each of which has lr bits, i.e., lm = `lr. The output
hash value z ∈ {0, 1}lh of PHOTON is represented by `′ chunks each of which has a
bit-length (bitrate) lr′ , where lh ∈ {80, 128, 160, 224, 256}. πp would apply a ls-bit SBOX,
where ls = 8 when lh = 256 and ls = 4 otherwise. We may append the concrete value of lh
to PHOTON to differentiate each version.

The evaluation algorithm of PHOTON on PLC is shown by Algorithm 9, which
mainly runs the permutation algorithm πp to generate the hash value. We present πp
in Algorithm 10. To get the least significant ls-bit from the SCShRMCS table look-up
result Tv (≥ 32 bits) to update the internal ls-bit state), we apply the optimization idea
B-RW to develop a function GetByte(Tv, start, ls) that can get each ls-bit block value
from Tv, where start indicates the starting bit to operate. That is, the returned value
res of GetByte(Tv, start, ls) is computed by a few assignments and additions res.[i] :=
Tv.[start + i] for i ∈ [ls]. All other steps are realized following the specification.

C.6 Pseudo-codes of SPONGENT
The main skeleton of evaluation algorithm is briefly presented in Algorithm 11.

To implement the permutation function πs, we first pre-compute round-dependent
LSFR constants VI[i] and IV[i] for i ∈ [T], unlike the reference implementation of SPON-
GENT [BKL+12] which, for example, computes IV[i] and VI[i] (for 88/178/88 version) on
the fly as

IV[i] = ((IV[i− 1] << 1)|(((0x80&IV[i− 1]) >> 7)⊕ ((0x08&IV[i− 1]) >> 3)⊕
((0x04&IV[i− 1]) >> 2)⊕ ((0x02&IV[i− 1]) >> 1)))&0xFF;

and

VI[i] = (((IV[i]&0x01) << 7)|((IV[i]&0x02) << 5)|((IV[i]&0x04) << 3)|((IV[i]&0x08) << 1)|
((IV[i]&0x10) >> 1)|((IV[i]&0x20) >> 3)|((IV[i]&0x40) >> 5)|((IV[i]&0x80) >> 7)).

That is, we try to avoid such an expensive computation (without hardware support) during
evaluation, so that we load them in the initialization phase as constants. The SBOX is
loaded as constants as well, so we can realize the SLayer by lookup operations. In addition,
the PLayer is implemented the similar idea in the implementation of PRESENT.

210PLCrypto: A Symmetric Cryptographic Library for Programmable Logic Controllers

Algorithm 9: Evaluation of PHOTON
Input: DINT ARRAY m[DNr] where DNr = lm

8 .
Output: DINT ARRAY z[DNr ′] where DNr ′ = lh

8 .
1: Load the hard-coded parameters {RC[i, j]}i∈[ld],j∈[T],
{PHTable[i, j, t]}}i∈[ld],j∈[2ls],t∈[2], initial state {C̄[i, j]}i∈[ld],j∈[ld];
//Compress the first lm − lr-bit message

2: MBitIdx := 0;
3: while MBitIdx <= lm − lr do
4: Absorb each message block by xoring it into matrix C̄.
5: {C̄[i, j]}i∈[ld],j∈[ld] := πp({C̄[i, j]}i∈[ld],j∈[ld]);
6: MBitIdx := MBitIdx + lr;
7: end while
8: Pad the last padded message block, and absorb it as before;

//Squeeze data blocks
9: hashbitlen := 0;
10: while hashbitlen <= lh do
11: Append lr′

8 state blocks into digest z;
12: C̄[i, j]}i∈[ld],j∈[ld] := πp({C̄[i, j]}i∈[ld],j∈[ld]);
13: hashbitlen := hashbitlen + lr′ ;
14: end while
15: return {z[j]}j∈[DNr

′];

Algorithm 10: Permutation πp of PHOTON
Input: DINT ARRAY C̄[ld, ld], internal state matrix.
Output: DINT ARRAY C̄[ld, ld].
1: for v := 0 to T − 1 by 1 do
2: AddConstant: add round-dependent constants to each cell of the

first column of C̄, i.e., C̄[i, 0] := C̄[i, 0] XOR RC[v] XOR IC[i];
// SubCell, ShiftRows, and MixColumnsSerial based on PHTable:

3: Duplicate C̄ to yield a copy C̄′
4: for j := 0 to ld − 1 by 1 do
5: Tv := 0; //Init the SCShRMCS table lookup result
6: for i := 0 to ld − 1 by 1 do
7: u := C̄′[i, (i+ j) MOD ld]; //Table look-up index
8: Tv := Tv XOR PHTable[i, u];
9: Start := 0;

//Update state with right-most ld × ls bits of Tv
10: for δ := 1 to ld by 1 do
11: C̄[ld − δ, j] := GetByte(Tv,Start, ls);
12: Start := Start + ls;
13: end for
14: end for
15: end for
16: end for
17: return {C̄[i, j]}i∈[ld],j∈[ld];

Zheng Yang, Zhiting Bao, Chenglu Jin, Zhe Liu and Jianying Zhou 211

Algorithm 11: Evaluation of SPONGENT
Input: DINT ARRAY m[DNr] where DNr = lm

8 .
Output: DINT ARRAY z[DNr ′] where DNr ′ = lm

8 .
1: Load the hard-coded parameters, incl. {IV[i]}i∈[T], {VI[i]}i∈[T],

and {SBOX[i]}}i∈[NS, where NS = lc+lr
8 ;

//Absorb available message blocks
2: while databitlen >= lr do
3: Absorb each lr-bit message block into the state St.
4: {St[i]}i∈[NS] := π({St[i]}i∈[NS]);
5: databitlen := databitlen-lr;
6: end while
7: Pad the last message block, and absorb it as before;

//Squeeze data blocks
8: while hashbitlen < lh do
9: Append the first lr-bit of St into the digest z.
10: {St[i]}i∈[NS] := π({St[i]}i∈[NS]);
11: hashbitlen:=hashbitlen+lr;
12: end while
13: return {z[j]}j∈[DNr

′];

Algorithm 12: Permutation πs of SPONGENT
Input: DINT ARRAY St[NS], where NS = lc+lr

8 .
Output: DINT ARRAY St[NS].
1: for j := 0 to T − 1 by 1 do
2: St[0] := St[0] XOR IV[j] AND 16#FF;
3: St[1] := St[0] XOR ((IV[j]/258) AND 16#FF);
4: St[NS− 2] := St[NS− 2] XOR VI[j] AND 16#FF;
5: St[NS− 1] := St[NS− 1] XOR ((VI[j]/258) AND 16#FF);

//SLayer
6: for i := 0 to NS− 1 by 1 do
7: St[i] := SBOX(St[i]);
8: end for

//PLayer with hard-coded assignments
9: ptmp[0].[0] := St[0].[0];

...
10: ptmp[6].[5] := St[4].[6];

...
11: ptmp[NS].[7] := St[NS].[7];
12: Copy the PLayer result ptmp to St;
13: end for
14: return {St[i]}i∈[NS];

C.7 Pseudo-codes of PoA

We implement the proof generation of PoA by Algorithm 13 and the replenishment
algorithm is shown by Algorithm 14.

212PLCrypto: A Symmetric Cryptographic Library for Programmable Logic Controllers

Algorithm 13: Proof Generation of PoA
Input: DINT Counters P, S and Idx, and DINT ARRAY τ [DNk] storing the

MAC of tags being protected, where Idx is an index of the next proof to
be computed.

Output: DINT ARRAY pw[DNx] storing the proof to be sent, DINT P, S and
Idx, and DINT ARRAY τ [DNk]

1: Check if {τ [i]}i∈[DNk] = Chaskey(P||S||Idx);
2: {pw[i]}i∈[DNx] := PRG(P||S + lr); //compute pS

0
3: if Idx=0 then
4: Idx := N ; // The value of N is hard-coded
5: S := S + 223; // S is stored at leftmost 9-bit of DINT
6: if S=M then
7: P := P + 1; // switch to new protocol instance
8: end if
9: end if
10: for i := 0 to Idx− 1 by 1 do
11: {pw[i]}i∈[DNx] := Fsss({pw[i]}i∈[DNx]]); //proof gen.
12: end for
13: Idx := Idx− 1; //update the index for next proof
14: {τ [i]}i∈[DNk] := Chaskey(P||S||Idx);
15: return {pw[i]}i∈[DNx], P, S, Idx and τ [DNk];

Algorithm 14: Proof Replenishment of PoA
Input: DINT counters P and S, and DINT ARRAY τ [DNk] storing the MAC of

tags being protected.
Output: DINT ARRAY Tail[M,DNx] storing the new tail nodes, DINT P, S and

Idx, and DINT ARRAY τ [DNk], and DINT ARRAY SIG[128,DNx]
storing signature

1: Check if {τ [i]}i∈[DNk] = Chaskey(P||S||Idx);
2: P := P + 1; S := 0; Idx := 0;

//Compute the i-th tail node
3: for i := 0 to M − 1 by 1 do
4: {Tail[i, µ]}µ∈[DNx] := PRG(P||i);
5: Repeat N times of {Tail[i, µ]}µ∈[DNx] := Fsss(Tail[i, µ]}µ∈[DNx]) to generate the

i-th tail node;
6: end for

//Lamport OTS, select 128 heads according to m
7: {m[ι]}ι∈[128] ← Hsss(Tail[i, j]}i∈[256],j∈[DNx]); //m is 128-bit
8: for i := 0 to 127 by 1 do
9: SIG[i, j]}j∈[DNx] := PRG(P||(2i+m[i])223 + lr);
10: end for
11: {τ [i]}i∈[DNk] := Chaskey(P||S||Idx); //protect the tags
12: return {Tail[i, j]}i∈[256],j∈[DNx], P, S, Idx, {τ [i]}i∈[DNk],

and SIG[i, j]}i∈j∈[128],j∈[DNx];

Zheng Yang, Zhiting Bao, Chenglu Jin, Zhe Liu and Jianying Zhou 213

D Implementation and Performance of Big-integer Oper-
ations

D.1 Pseudo-codes of Big-integer Operations
Here we focus on describing the implementation of big-integer operations with a particular
base b = 2lb that can be optimized via ST’s bit-wise operability. For other bases, e.g.,
b = 10, they can be implemented analogously following the specification. We represent
each operand of big-integer operation with lb-bit digits. The implementation of multiple-
precision addition Add(x, y) is shown by Algorithm 15. Since the carry is only a one-bit
value, we can obtain it from the sum of two digits for free, e.g., c := w[i].[lb], and the mod
base operation can be straightforwardly realized by setting the lb-th bit to be zero.

Algorithm 15: Big-integer Multiple-precision Addition
Input: Positive integers x and y are represented as DINT ARRAY x[la] and y[la],

i.e., each operand has la digits with base b = 2lb .
Output: DINT ARRAY w[la + 1] storing the sum w = x+ y = (w[la] . . . w[0])b.
1: c := 0; //Initialize carry c to zero
2: for i := 0 to la − 1 by 1 do
3: w[i] := x[i] + y[i] + c; // add each digit
4: c := w[i].[lb];
5: w[i].[lb] := 0; // mod 2lb

6: end for
7: w[la] := c;
8: return {w[i]}i∈[la+1];

Algorithm 16 shows the implementation of multiple-precision subtraction Sub(x, y).
Here an AND operation is used to realize the mod b = 2lb operation, e.g., w[i] := w[i]
AND 032−lb ||1lb−1, since PLC adopts two’s complement to represent a negative number
consisting of many ones that should be removed.

Algorithm 16: Big-integer Multiple-precision Subtraction
Input: Positive integers x and y are represented as DINT ARRAY x[la] and y[la],

i.e., each operand has la base b = 2lb digits.
Output: DINT ARRAY w[la] storing the difference

w = x− y = (w[la − 1] . . . w[0])b.
1: c := 0; //Initialize carry c to zero
2: for i := 0 to la − 1 by 1 do
3: w[i] := (x[i]− y[i] + c); // substract each digit
4: if w[i].[31] = 1 then
5: c := −1; // w[i].[31] is the sign bit
6: end if
7: w[i] := w[i] AND 032−lb ||1lb−1; // mod 2lb

8: end for
9: return {w[i]}i∈[la];

The multiple-precision multiplication algorithm Mul(x, y) is implemented with Algo-
rithm 17, which mainly leverages on the above new mod b operation approach and our
PLC shift function introduced before.

The implementation of multiple-precision division Div(x, y) is shown by Algorithm 18.
To compare two equal-length big-integers, we define a comparison function Comp({x[i]}i∈[la],
{y[i]}i∈[la]) that two takes as input big-integers’ digit representation and outputs the

214PLCrypto: A Symmetric Cryptographic Library for Programmable Logic Controllers

Algorithm 17: Big-integer Multiple-precision Multiplication
Input: Positive integers x and y are represented as DINT ARRAY x[la] and y[ly],

i.e., x has la base b = 2lb digits and y has ly base b digits.
Output: DINT ARRAY w[la + ly] storing the product (w[la + ly − 1] . . . w[0])b.
1: {w[i]}i∈[la+ly] := 0;
2: for i := 0 to ly − 1 by 1 do
3: c := 0;
4: for j := 0 to la − 1 by 1 do
5: } := w[i+ j] + y[j] · x[i] + c; //} = (uv)b

6: w[i+ j] := } AND 032−lb ||1lb−1; //w[i+ j] := v
7: c := h/b; //c := u

8: end for
9: w[i+ j] := c;

10: end for
11: return {w[i]}i∈[la+ly];

digital-wise comparison result r ∈ {0, 1}, where 1 indicates {x[i]}i∈[la] ≥ {y[i]}i∈[la] and 0
otherwise. And we say that {x[i]}i∈[la] ≥ {y[i]}i∈[la] if and only if x[i] ≥ y[i] for all i ∈ [la].

During the division, we need to shift left a big-integer with a few digits, e.g., the result
of ybi−ly−1 (as illustrated in Section A.5). To so do, we define a function LShiftB that
takes as input a big-integer {x[i]}i∈[la] and the number of digits pos(< la) that it will
shift, it returns the left-shifted result {y[i]}i∈[la]. That is, y[i] := 0 for i ∈ [pos], and
y[j] := x[j − pos] for j ∈ [pos, la].

By Algorithm 19, we implement multiplication in a additive group Zm, i.e., AMul.
Since scanning the bits of the input e is free, AMul can be realized by running our multiple-
precision addition following the specification. In the meantime, if some intermediate result
is larger than 2m, we do the modular reduction of the value by subtracting it with m.

D.2 Performance of Big-integer Operations
Big-integer operations are implicitly used in our PLCrypto, while mathematical operations
are carried with operands over 30 bits. To show the performance of big-integer operations
on PLC, we implement five typical big-integer operations as presented in Appendix A.5 and
Appendix D.1, i.e., multiple-precision addition (Add), subtraction (Sub), multiplication
(Mul), and division (Div), and additive multiplication (AMul).

We benchmark the big-integer operations with three types of bases, i.e., b = 215,
b = 230 and b = 10. However, base b = 230 is used for benchmarking the addition and the
subtraction only, since 30-bit multiplication would exceed the range of DINT. Note that the
big-integer addition/subtraction with base b = 230 is implicitly used in the implementation
of SPECK. Note that modulo 231 addition (used by subset-sum based OWF) is similar to
that of modulo 230. We thus omit it here for simplicity. Also, the 32-th bit of a DINT
variable is the sign bit that cannot be used to store the multiplication result, so the base
b = 215 is the largest base and most efficient one for multiplication that we could test.

In Figure 9, we show the performance of five types of big-integer functions. The Add
and Sub are not efficient enough comparing to the corresponding results on other platforms.
So the Mul and the Div which are realized based on Add and Sub are costly. Since the
group formed by the points on elliptic curve cryptography (ECC) over a finite field unitizes
additive notation, our result regarding Algorithm 19 implies that ECC might be feasible
on PLC. For example, AMul with 512-bit multipliers costs around 400 ms. Also, we have
experimentally verified that the DINT multiplication is constant-time on our platform,
regardless of the given operands. In this work, we just made some preliminary attempts

Zheng Yang, Zhiting Bao, Chenglu Jin, Zhe Liu and Jianying Zhou 215

Algorithm 18: Big-integer Multiple-precision Division
Input: Positive integers x and y are represented as DINT ARRAY x[la] and y[ly]

(la ≥ ly ≥ 1 and y 6= 0), i.e., x and has la base b = 2lb digits, y has ly base
b digits.

Output: DINT ARRAY q[la − ly + 1] and r[ly], storing quotient
q = (q[la − ly], . . . , q[0])b and reminder r = (r[ly − 1], . . . , r[0])b.

1: {q[i]}i∈[la−ly+1] := 0;
2: {z[i]}i∈[la] := LShiftB({y[i]}i∈[ly], ly);

//Compute the highest digit of the quotient
3: while Comp({x[i]}i∈[la], {z[i]}i∈[la]) = 1 do
4: q[la − ly] := q[la − ly] + 1;
5: {x[i]}i∈[la] := Sub({x[i]}i∈[la], {z[i]}i∈[la]);
6: end while

//Compute other digits of the quotient
7: for i := la − 1 to ly by -1 do
8: if x[i] = y[ly − 1] then
9: q[i− ly] := b− 1;

10: else
11: q[i− ly] := x[i]b+x[i−1]

y[ly−1]);
12: end if
13: θ := y[ly − 1]b+ y[ly − 2];
14: while q[i− ly]θ > x[i]b2 + (x[i− 1]b+ x[i− 2] do
15: q[i− ly] := q[i− ly]− 1;
16: end while
17: {r[i]}i∈[la] := LShiftB({y[i]}i∈[ly], la − (i− ly));
18: {w[i]}i∈[la] := Mul(q[i− ly], {r[i]}i∈[la]);
19: {x[i]}i∈[la] := Sub({x[i]}i∈[la], {w[i]}i∈[la]);
20: if Comp({x[i]}i∈[la], 0) = 0 then
21: {x[i]}i∈[la] := Add({x[i]}i∈[la], {r[i]}i∈[la]);
22: q[i− ly] := q[i− ly]− 1;
23: end if
24: end for
25: {r[i]}i∈[ly] := {x[i]}i∈[ly];
26: return {q[i]}i∈[la−ly+1] and {r[i]}i∈[ly];

to realize big-integer operations and put an emphasis on what we need to implement
symmetric cryptographic algorithms. It is an open question to implement the big-integer
operations on PLC efficiently, and then realize public-key cryptography on PLC. We leave
out this as one of the future works.

216PLCrypto: A Symmetric Cryptographic Library for Programmable Logic Controllers

0 512 1024 1536 2048
0

0.41

0.82

1.23

1.64

Input Length (bits)

R
un

ti
m
e
(m

s)

b=215

b=230

(a) Add

0 512 1024 1536 2048
0

0.5

1.0

1.5

2.0

Input Length (bits)

R
un

ti
m
e
(m

s)

b=215

b=230

(b) Sub

0 512 1024 1536 2048

0

36

72

108

144

Input Length (bits)

R
un

ti
m
e
(m

s)

b=215

(c) Mul

0 512 1024 1536 2048

0

3.05

6.1

9.15

12.2

Input Length (bits)

R
un

ti
m
e
(s
)

Div b=215

AMul b=230

(d) Div and AMul

Figure 9: Runtimes of Big-integer Operations.

Zheng Yang, Zhiting Bao, Chenglu Jin, Zhe Liu and Jianying Zhou 217

Algorithm 19: Big-integer Multiplication in an Additive Group
Input: Positive integers (e, g) ∈ Zm which are represented as DINT ARRAY x[la]

and y[la], i.e., each operand has la base b = 2lb digits.
Output: DINT ARRAY w[la] storing the product

w = e · g = (w[la − 1] . . . w[0])b ∈ Zm.
1: {w[i]}i∈[la] := 0;
2: for i := 0 to la − 1 by 1 do
3: j := lb;
4: while j >= 0 do
5: {w[i]}i∈[la] := Add({w[i]}i∈[la], {w[i]}i∈[la]);
6: if e[i].[j] = 1 then
7: {w[i]}i∈[la] := Add({w[i]}i∈[la], {g[i]}i∈[la]);
8: end if
9: if Comp({w[i]}i∈[la], 2m) = 1 then
10: {w[i]}i∈[la] := Sub({w[i]}i∈[la],m); //w mod m
11: end if
12: j := j − 1;
13: end while
14: end for
15: return {w[i]}i∈[la];

	Introduction
	Related Work
	Preliminaries
	Background of PLC Programming
	Subset-sum Problem
	Algorithms in PLCrypto

	Threat Model
	PLCrypto Overview
	System Level Settings for Security
	Overview of Implementation Tricks
	Security Principles against Tag Manipulation Attacks
	Selection Criteria of Algorithms in PLCrypto

	PLCrypto Implementation
	Implementation of OWF and UOWHF
	Shifting and Rotation Operations
	Implementation of MAC Algorithm Chaskey
	Implementations of Block Ciphers: PRESENT, SPECK, and SIMON
	Implementations of Collision Resistant Hash Functions: PHOTON and SPONGENT

	Case Study: Proof of Aliveness
	Benchmark
	Conclusion and Future Work
	Other Preliminaries
	Chaskey
	Block Ciphers
	Collision-resistant Hash Functions PHOTON and SPONGENT
	Proof of Aliveness
	Big-integer Operations

	Remarks on Extending the Life-span of PoA Instances
	Other Pseudo-codes
	Pseudo-codes of Chaskey
	Pseudo-code of SPECK
	Pseudo-code of SIMON
	Pseudo-code of PRF and PRG
	Pseudo-codes of PHOTON
	Pseudo-codes of SPONGENT
	Pseudo-codes of PoA

	Implementation and Performance of Big-integer Operations
	Pseudo-codes of Big-integer Operations
	Performance of Big-integer Operations

